CS371N: Natural Language Processing Lecture 11: Transformers for Language Modeling, Implementation

Greg Durrett

Multi-Head Self-Attention

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let E = [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
 - Query $Q = EW^Q$: each token "chooses" what to attend to
 - ► Keys $K = EW^K$: these control what each token looks like as a "target"
 - ▶ Values $V = EW^V$: these vectors get summed up to form the output

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$
 dim of keys

Vaswani et al. (2017)

Self-Attention

Self-Attention

Alammar, The Illustrated Transformer sent len x sent len (attn for each word to each other)

sent len x hidden dim

Z is a weighted combination of V rows

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to.
 E.g., the first "v" attends very heavily to itself (bright yellow box)
- Your task on the HW: assess if the attentions make sense

Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Alammar, The Illustrated Transformer

Multi-head Self-Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix Wo to produce the output of the layer

Thinking Machines

 W_0^Q W_0^V

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Mo

Transformers

Architecture

 Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in the homework)

Dimensions

- Vectors: d_{model}
- Queries/keys: d_k , always smaller than d_{model}
- Values: separate dimension d_v , output is multiplied by W^o which is $d_v x d_{model}$ so we can get back to d_{model} before the residual
- FFN can explode the dimension with W_1 and collapse it back with W_2

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

*Note: assignment calls d_k as $d_{internal}$

Vaswani et al. (2017)

Transformer Architecture

	$\mid N \mid$	$d_{ m model}$	$d_{ m ff}$	h	d_{k}	d_v
base	6	512	2048	8	64	64

From Vaswani et al.

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$
GPT-3 Small	125M	12	768	12	64
GPT-3 Medium	350M	24	1024	16	64
GPT-3 Large	760M	24	1536	16	96
GPT-3 XL	1.3B	24	2048	24	128
GPT-3 2.7B	2.7B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128

From GPT-3; d_{head} is our d_k

Transformer Architecture

1	description	FLOPs / update	% FLOPS MHA	FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

Transformers: Position Sensitivity

The ballerina is very excited that she will dance in the show.

If this is in a longer context, we want words to attend locally

But transformers have no notion of position by default

Transformers: Position Sensitivity

- Encode each sequence position as an integer, add it to the word embedding vector
- Why does this work?

Transformers

Alammar, The Illustrated Transformer

 Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)

Embedding dim

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts — will return in the context of MT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

Transformer Language Modeling

What do Transformers produce?

- ► Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Transformer Language Modeling

 W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training Transformer LMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

I saw the dog running in the park and it looked very excited to be there

Multiple sequences and multiple timesteps per sequence

A Small Problem with Transformer LMs

This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

► With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

```
# Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
```

You cannot use these for Part 1, only for Part 2

LM Evaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length) $\frac{1}{n}$

$$\frac{1}{n} \sum_{i=1}^{n} \log P(w_i | w_1, \dots, w_{i-1})$$

- Perplexity: exp(average negative log likelihood). Lower is better
 - Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences