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Multi-Head Self-Attention



Multi-Head Self Attention

Vaswani et al. (2017)

‣ Multiple “heads” analogous to different convolutional filters

‣ Let E = [sent len, embedding dim] be the input sentence. This will be 
passed through three different linear layers to produce three mats:

‣ Query Q = EWQ: each token “chooses” what to attend to

‣ Keys K = EWK: these control what each token looks like as a “target”

‣ Values V = EWV: these vectors get summed up to form the output

dim of keys



Self-Attention
Alammar, The Illustrated Transformer



Self-Attention
Alammar, The Illustrated Transformer

sent len x hidden dim
Z is a weighted combination of V rows

sent len x sent len (attn for 
each word to each other)



Attention Maps
‣ Example visualization of 
attention matrix A (from 
assignment)

‣ Each row: distribution over 
what that token attends to. 
E.g., the first “v” attends very 
heavily to itself (bright yellow 
box)

‣Your task on the HW: assess 
if the attentions make sense



Multi-head Self-Attention
Alammar, The Illustrated TransformerJust duplicate the whole 

computation with different 
weights:



Multi-head Self-Attention



Transformers



Architecture
‣ Alternate multi-head self-attention with 
feedforward layers that operate over each 
word individually

‣ Residual connections in the model: input of a 
layer is added to its output

‣ Layer normalization: controls the scale of 
different layers in very deep networks (not 
needed in the homework)

‣ These feedforward layers are where most 
of the parameters are



Dimensions

Vaswani et al. (2017)

‣ Vectors: dmodel

‣ Queries/keys: dk , always smaller than dmodel

‣ Values: separate dimension dv , 
output is multiplied by WO which 
is dv x dmodel so we can get back to 
dmodel before the residual

dmodel

dk dk dv

dmodel

dinternal

dmodel

‣ FFN can explode the dimension with W1 
and collapse it back with W2

*Note: assignment calls dk as dinternal



Transformer Architecture

dmodel

dmodel

dmodel

‣ From GPT-3; dhead is our dk

‣ From Vaswani et al.



Transformer Architecture

Credit: Stephen Roller on Twitter



Transformers: Position Sensitivity

Vaswani et al. (2017)

The ballerina is very excited that she will dance in the show.

‣ If this is in a longer context, we want words to attend locally

‣ But transformers have no notion of position by default



Transformers: Position Sensitivity

‣ Encode each sequence position as an integer, add it to the word 
embedding vector

‣ Why does this work?

the  movie  was   great
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Transformers
Alammar, The Illustrated Transformer

W
or
ds

Embedding dim

‣ Alternative from Vaswani et al.: sines/cosines of different frequencies 
(closer words get higher dot products by default)



Transformers: Complete Model

Vaswani et al. (2017)

‣ Original Transformer paper presents an 
encoder-decoder model

‣ Right now we don’t need to think about both 
of these parts — will return in the context of 
MT

‣ Can turn the encoder into a decoder-only 
model through use of a triangular causal 
attention mask (only allow attention to 
previous tokens)



Transformer Language Modeling



What do Transformers produce?

‣ Encoding of each word — can pass this to another layer to make a 
prediction (like predicting the next word for language modeling)

the  movie  was   great

‣ Like RNNs, Transformers can be viewed as a transformation of a 
sequence of vectors into a sequence of context-dependent vectors



Transformer Language Modeling

I       saw    the    dog

hi

P (w|context) = exp(w · hi)P
w0 exp(w0 · hi)

P (w|context) = softmax(Whi)

‣ W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows 
are word embeddings)

equivalent to

word probs



Training Transformer LMs

<s>       I       saw    the    dog

‣ Input is a sequence of words, output is those words shifted by one,

I       saw    the    dog  running

‣ Allows us to train on predictions across several timesteps simultaneously 
(similar to batching but this is NOT what we refer to as batching)



Training Transformer LMs

I       saw    the    dog

Total loss = sum of negative log 
likelihoods at each position

P(w|context)

loss = — log P(w*|context)

loss_fcn = nn.NLLLoss()	
loss += loss_fcn(log_probs, ex.output_tensor)

[seq len, num output classes] [seq len]

‣ Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num 
classes] to [batch * seq len, num classes]. You do not need to batch



Batched LM Training
I saw the dog running in the park and it looked very excited to be there

<s>       I       saw    the    dog

I       saw    the    dog  running

<s>      in      the    park   and

in      the    park   and     it
batch dim

‣ Multiple sequences and multiple 
timesteps per sequence

looked very excited to be



A Small Problem with Transformer LMs

<s>       I       saw    the    dog

‣ With standard self-attention: “I” attends to “saw” and the model is 
“cheating”. How do we ensure that this doesn’t happen?

I       saw    the    dog  running

‣ This Transformer LM as we’ve described it will easily achieve perfect 
accuracy. Why?



Attention Masking

<s>       
I       
saw    
the    
dog

‣ We want to prohibit

‣ We want to mask out everything in red (an upper triangular matrix)

<s>       I       saw    the    dog

Query words

Key words



Implementing in PyTorch

‣ nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, 
can accept an input and a mask for language modeling:

‣You cannot use these for Part 1, only for Part 2

# Inside the module; need to fill in size parameters	
layers = nn.TransformerEncoderLayer([...])	
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])	
[. . .]	
# Inside forward(): puts negative infinities in the red part	
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)	
output = transformer_encoder(input, mask=mask)



LM Evaluation

‣ Accuracy doesn’t make sense — predicting the next word is generally 
impossible so accuracy values would be very low

‣ Evaluate LMs on the likelihood of held-out data (averaged to 
normalize for length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity: exp(average negative log likelihood). Lower is better
‣ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
‣ Avg NLL (base e) = 1.242     Perplexity = 3.464 <== geometric mean of	
                                                                                         denominators



Takeaways

‣ Transformers are going to be the foundation for the much of the rest 
of this class and are a ubiquitous architecture nowadays

‣ Many details to get right, many ways to tweak and extend them, but 
core idea is the multi-head self attention and their ability to 
contextualize items in sequences


