CS371N: Natural Language Processing Lecture 11: Transformers for Language Modeling, Implementation

Greg Durrett

Multi-Head Self-Attention

Multi-Head Self Attention

- Multiple "heads" analogous to different convolutional filters
- Let *E* = [sent len, embedding dim] be the input sentence. This will be passed through three different linear layers to produce three mats:
- Query $Q = EW^Q$: each token "chooses" what to attend to
- ► Keys $K = EW^K$: these control what each token looks like as a "target"
- ▶ Values $V = EW^v$: these vectors get summed up to form the output

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V \qquad \text{dim of keys}$$

Vaswani et al. (2017)

Transformers

Architecture

Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in the homework)

Dimensions

- ▶ Vectors: d_{model}
- Queries/keys: d_k , always smaller than d_{model}
- ▶ Values: separate dimension d_v , output is multiplied by Wo which is $d_v x d_{model}$ so we can get back to d_{model} before the residual
- FFN can explode the dimension with W_1 and collapse it back with W_2

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

*Note: assignment calls d_k as $d_{internal}$

	Trar	Transformer Architecture							
	t al.	$\begin{array}{ccc} d_k & d_v \\ \hline 64 & 64 \end{array}$	_			Add & Norm Feed Forward			
Model Name	n_{params}	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	d _{model}			
GPT-3 Small	125M	12	768	12	64	Add & Norm			
GPT-3 Medium	350M	24	1024	16	64				
GPT-3 Large	760M	24	1536	16	96	Multi-Head			
GPT-3 XL	1.3B	24	2048	24	128	Attention			
GPT-3 2.7B	2.7B	32	2560	32	80	Attention			
GPT-3 6.7B	6.7B	32	4096	32	128				
GPT-3 13B	13.0B	40	5140	40	128				
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128				
From GPT-3: dhar	is our	r dı				d_{model}			

Transformer Architecture

1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

Transformers: Position Sensitivity

The ballerina is very excited that she will dance in the show.

- If this is in a longer context, we want words to attend locally
- ▶ But transformers have no notion of position by default

Vaswani et al. (2017)

Transformers: Position Sensitivity

- Encode each sequence position as an integer, add it to the word embedding vector
- Why does this work?

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts — will return in the context of MT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

Vaswani et al. (2017)

Transformer Language Modeling

What do Transformers produce?

- Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Transformer Language Modeling

 W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training Transformer LMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)

A Small Problem with Transformer LMs

This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

- Ve want to prohibit

 Sey words

 Sey I saw the dog

 Sey I saw the dog
- We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

 nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

```
# Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
```

▶ You cannot use these for Part 1, only for Part 2

LM Fyaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Fixed Evaluate LMs on the likelihood of held-out data (averaged to normalize for length) $\frac{n}{1-n}$

$$\frac{1}{n}\sum_{i=1}^n \log P(w_i|w_1,\ldots,w_{i-1})$$

- ► Perplexity: exp(average negative log likelihood). Lower is better
 - Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences