CS371N: Natural Language Processing
Lecture 11: Transformers for Language
Modeling, Implementation

Greg Durrett

TEXAS

The University of Texas at Austin

Multi-Head Self-Attention

Multi-Head Self Attention

> Multiple “heads” analogous to different convolutional filters

> Let E = [sent len, embedding dim] be the input sentence. This will be
passed through three different linear layers to produce three mats:

> Query Q = EWQ: each token “chooses” what to attend to

> Keys K = EWK: these control what each token looks like as a “target”

> Values V = EWV: these vectors get summed up to form the output

QK"
Vi

Attention(Q, K, V') = softmax(1%

"= dim of keys

Vaswani et al. (2017)

Input

Embedding

Queries

Keys

Values

Self-Attention
Alammar, The lllustrated Transformer
111 1T
T 1T 17
(1T 1] (T
1] 1]

Self-Attention Attention Maps

Alammar, The lllustrated Transformer . S)
f » Example visualization of heir average albedo

sent len x sent len (attn for attention matrix A (from

’:H:F x = H each word to each other) assignment)
T

» Each row: distribution over

softmax(E—%) EH what that token attends to.
Vi

E.g., the first “v” attends very

EEEE X = E ' heavily to itself (bright yellow
_ EH box)

. . > Your task on the HW: assess
sent len x hidden dim) .
if the attentions make sense

:
.i

Z is a weighted combination of V rows

Multi-head Self-Attention Multi-head Self-Attention

Just dupllcate the Whole Alammar, The lllustrated Transformer 1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
. . . input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
Computatlon Wlth dlﬁerent with weight matrices /K/V matrices produce the output of the layer
weights:
ATTENTION HEAD #0 ATTENTION HEAD #1

SEE -

*1n all encoders other than #0,

we don’t need embedding.

We start directly with the output | T
of the encoder right below this one

Architecture

> Alternate multi-head self-attention with

()
Add & Norm

feedforward layers that operate over each
word individually Feed
Forward
f FFN(.’L’) = IIIEHJX(O7 le + bl)WQ + b2
Tra nsrormers > These feedforward layers are where most
of the parameters are Add & Norm
> Residual connections in the model: input of a N*L’Jclc:n:'ii?]d
layer is added to its output
. L S
> Layer normalization: controls the scale of -~ |)
different layers in very deep networks (not
needed in the homework)
Dimensions Transformer Architecture
- L dmodel ~ - L dmade/
> Vectors: dmodel N dnde dx h dp dy
. Add & Norm base \ 6 512 2048 8 64 64 Add & Norm
> Queries/keys: dk, always smaller than dmodel Feed) Feed
Cintdenal Forward » From Vaswani et al. Forward
> Values: separate dimension dy,
. . 0 i L
ou;pu::jls mu'tlplled by W bWhII(Ch model Model Name NMparams Mlayers dmodel Mheads @head dmode/
IS dvX dmodel SO We Can get back to Add & Norm GPT-3 Small 125M 12 768 12 64 Add & Norm
dmodel before the residual : GPT-3 Medium 350M 24 1024 16 64 _
Multi-Head GPT-3 Large 760M 24 1536 16 96 Multi-Head
* FFN can explode the dimension with W, Attention LSS b o S o Attention
and collapse it back with W, dkA_dk4 dvp GPT-36.7B 6.7B 32 4096 32 128 A)
\ GPT-3 13B 130B 40 5140 40 128 \
FFN(z) = max(0, Wy + b)) Wo + by . — J GPT-3175Bor “GPT-3” 1750B 96 12288 96 128 \Q . J
model model

*Note: assignment calls dk as dinternal

Vaswani et al. (2017)

> From GPT-3; dheqq is our di

: Transformer Architecture : Transformers: Position Sensitivity

% % % %

1 FLOPs/ FLOPS FLOPS FLOPS FLOPS
description update MHA FFN attn logit /\
8 OPT setups The ballerina is very excited that she will dance in the show.
9 760M 4.3E+15 35% 4% 148% 5.8%
10 1.3B 1.3E+16 32% 51% 127% 5.0% S
> > - > > If this is in a longer context, we want words to attend locally
1 27B 2.5E+16 29% 56% 11.2% 3.3%
12 6.7B 1.1E+17 24% 65% 8.1% 2.4%
13 13B 4.1E+17 22% 69% 6.9% 1.6% > But transformers have no notion OprSit'ion by default
14 30B 9.0E+17 20% 74% 53% 1.0%
15 66B 9.5E+17 18% 77% 4.3% 0.6%
16 175B 24E+18 17% 80% 3.3% 0.3%
Credit: Stephen Roller on Twitter Vaswani et al. (2017)
: Transformers: Position Sensitivity : Transformers
Alammar, The lllustrated Transformer
Eositignal @ me \H gHt » Alternative from Vaswani et al.: sines/cosines of different frequencies
ncoding
+ + + +

Input
Embedding

Inputs

[embla]
[embia]

[embia]

[emb]

> Encode each sequence position as an integer, add it to the word

embedding vector

> Why does this work?

(closer words get higher dot products by default)

Words

Embedding dim

Transformers: Complete Model

Probabilities

> Original Transformer paper presents an
encoder-decoder model

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

> Right now we don’t need to think about both
of these parts — will return in the context of
h MT

Add & Norm

Feed
Forward

Add & Norm
Masked

Add & Norm
Multi-Head

Atenton Mtenton > Can turn the encoder into a decoder-only
] L - .
=) model through use of a triangular causal
Positional Positional . .
Encoding ecoang attention mask (only allow attention to
Input Output .
Embedding Embedding previous to kens)
ets (snian wer Vaswani et al. (2017)

Transformer Language Modeling

What do Transformers produce?

t t t t
[Il Il]! |
the movie was great

> Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

> Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Language Modeling

word probs

by
| P(w|context) = exp(w - i)

b :tFI > eXp(W’ - hy)

equivalent to

| saw the dog P(w|context) = softmax(Wh,)

> Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training Transformer LMs

I saw the dog running

t t t t

<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

> Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

| — P(w]|context)

[
. ' T — “loss = — log P(w* | context)
' f Il F Il I F | Total loss = sum of negative log
| | likelihoods at each position
f i f i

[I I I[|
I saw the dog

loss_fcn = nn.NLLLoss()

loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num output classes] [seq len]

> Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num

classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

batch dim / (looked very excited to be R
~

e in the park and it
(1 saw the dog running : t ’ 1 ’ t " } , t |
e 1T f f ¥
[¥ Il F I[¥ I ¥ IL ¥ | | |
| t 1 t 1
[]] Il Il |
| Il Il ! Il ! 1T i | | <s> in the park and jJ
<> | saw the dog J, Multiple sequences and multiple

timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

I saw the dog running

| t t t t |
t t t t

[I I Il]! |

<s> | saw the dog

> With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking

> We want to prohibit

Key words
<s> | saw the dog
<s> |
| |
Query words g\ I
the [
dog

> We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderlLayers,

can accept an input and a mask for language modeling:

Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])

transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...

[. ..]

Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)

> You cannot use these for Part 1, only for Part 2

D

LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length) n

;ZlogP(wi\wl, N 711)2',1)
s i=1

» Perplexity: exp(average negative log likelihood). Lower is better
» Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

> Avg NLL (base e) =1.242 Perplexity = 3.464 <== geometric mean of
denominators

Takeaways

> Transformers are going to be the foundation for the much of the rest
of this class and are a ubiquitous architecture nowadays

> Many details to get right, many ways to tweak and extend them, but
core idea is the multi-head self attention and their ability to
contextualize items in sequences

