
CS371N: Natural Language Processing	
Lecture 17: Parsing II

Greg Durret

Announcements

‣ Midterm Thursday:

‣ One 8.5”x11” notesheet, double-sided

‣ No calculators

‣ See past exams for format

‣ A4 due today

Recap: PCFGs§  Write	symbolic	or	logical	rules:	

§  Use	deduc4on	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

‣ Context-free grammar: symbols which rewrite as one or more symbols

‣ Lexicon consists of “preterminals” (POS tags) rewriting as terminals (words)

‣ CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start
symbol (generally a special ROOT symbol), R = rules

‣ PCFG: probabilities associated with rewrites, normalize by source symbol

0.2
0.5

0.3
0.7
0.3
1.0

1.0
1.0

1.0
1.0
1.0
1.0

Recap: Learning PCFGs

‣ Maximum likelihood PCFG for a set of
labeled trees: count and normalize!
Same as HMMs / Naive Bayes

S → NP VP

NP → PRP

NP → DT NN

…

1.0

0.5

0.5

Recap: CKY

‣ Chart: T[i,j,X] = best score for X
over (i, j)

‣ Base: T[i,i+1,X] = log P(X → wi)

w1

‣ Recurrence:	
T[i,j,X] = max max T[i,k,X1] + T[k,j,X2] + log P(X → X1 X2)

w2 w3 w4

T[i,j,X]
NP

VP S …

k r: X → X1 X2

‣ Loop over all split points k,	
apply rules X -> Y Z to build	
X in every possible way

S[0,4] => NP[0,2] VP[2,4]

Parser Evaluation

Parser Evaluation

‣ View a parse as a set of labeled
brackets / constituents

S(0,3)

NP(0,1)

PRP(0,1) (but standard evaluation
does not count POS tags)

VP(1,3), VBD(1,2), NP(2,3), PRP(2,3)

S

NP
VP

She saw it

VBD PRPPRP

0 1 2 3

NP

Parser Evaluation
S(0,3),
NP(0,1),
VP(1,3),
NP(2,3),
PRP(0,1),
VBD(1,2),
PRP(2,3)

S

NP

She saw it

NN PRPPRP

0 1 2 3

NP

S(0,3),
NP(0,2),
NP(2,3),
PRP(0,1),
NN(1,2),
PRP(2,3)

‣ Precision: number of correct predictions / number of predictions = 2/3

‣ Recall: number of correct predictions / number of golds = 2/4

‣ F1: harmonic mean of precision and recall = (1/2 * ((2/4)-1 + (2/3)-1))-1

= 0.57 (closer to min)

S

NP
VP

She saw it

VBD PRPPRP

0 1 2 3

NP

Results

‣ Standard dataset for English: Penn Treebank (Marcus et al., 1993)

‣ “Vanilla” PCFG: ~71 F1

‣ Best PCFGs for English: ~90 F1

‣ Other languages: results vary widely depending on annotation +
complexity of the grammar

‣ State-of-the-art discriminative models (using unlabeled data): 95 F1
Dependency Parsing

Dependency Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependencies: syntactic structure is defined by relations between words	
‣ Head (parent, governor) connected to dependent (child, modifier)	
‣ Each word has exactly one parent except for the ROOT symbol,
dependencies must form a directed acyclic graph

ROOT

‣ POS tags same as before, usually run a tagger first as preprocessing

Why are they defined this way?
‣ Constituency tests:
‣ Substitution by proform: the dog did so [ran to the house],
he [the dog] ran to the house

‣ Clefting (It was [to the house] that the dog ran…)

‣ Dependency: verb is the root of the clause, everything else follows
from that

‣ No notion of a VP!

Dependency Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ Still a notion of hierarchy! Subtrees often align with constituents

Dependency Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Can label dependencies according to syntactic function

det

‣ Major source of ambiguity is in the structure, so we focus on that more
(labeling separately with a classifier works pretty well)

nsubj

pobj

detprep

Dependency vs. Constituency: PP Attachment

‣ Constituency: several rule productions need to change

the children ate the cake with a spoon

‣ Dependency: one word (with) assigned a different parent

Dependency vs. Constituency: PP Attachment

‣ More predicate-argument focused view of syntax

‣ “What’s the main verb of the sentence? What is its subject and object?”
— easier to answer under dependency parsing

‣ corenlp.run: spoon is child instead of with. This is just a different formalism

Parsers Today

‣ Shift-reduce parsers: parsers that construct a tree from a sentence via a
greedy sequence of operations. similar to parsing algorithms for compilers:

Modern Parsers

I ate some spaghetti bolognese

ROOT

Shift, Shift, Left-arc, Shift, Shift, Left-arc, Shift, Right-arc, Right-arc, Right-arc
I <- ate some <- spaghet spaghetti ->

bolognese
ate ->
spaghet

ROOT ->
ate

‣ These parsers historically worked less well. But with neural networks,
they’re pretty good and very fast!

Universal Dependencies
‣ Annotate dependencies with the same representation in many languages

http://universaldependencies.org/

English

Bulgarian

Czech

Swiss

Reflections on Structure

‣ What is the role of it now?

‣ To improve systems, do we need to understand what they do?

‣ Systems still make these kinds of judgments, just not explicitly

