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Some slides from Yoav Artzi

Announcements
‣ Midterm back

‣ A4 grading underway

‣ A5 due Thursday

‣ Vote!

Recap: Chain-of-thought
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GPT-3

Context: Christopher agrees with Kevin. […] Q: Who hangs out with a student?

Mary, because Mary hangs out with Danielle and Danielle is a student.

Context: Adam plays with Ellen. […] Q: Who plays with a doctor?

greedy decoding from GPT-3

Train Ex

Train Ex

Adam, because Adam plays with Ellen and Ellen is a doctor.

Recap: Chain-of-thought

Wei et al. (2022)

‣ Can help substantially on 
mathematical reasoning

‣ Some work to optimize 
the specifics of the 
prompts and the 
examples



Today

‣ RLHF

‣ Task-oriented dialogue systems

‣ Chatbots

‣ Instruction tuning

‣ Alignment:

Alignment

Alignment

Samples from GPT-3	
(a “basic” LM)

Alignment

Conclusion

Intro

Main answer



Alignment

‣ Alignment: general class of methods for making LLMs produce useful output

‣ Sometimes broken down into “helpfulness” (responsiveness to 
prompts, informativeness, correctness) and “harmlessness” (not 
being biased or toxic, not responsive to harmful prompts)

‣ Two main versions of this:

‣ Instruction tuning: supervised fine-tuning on data derived from many 
NLP tasks

‣ Reinforcement learning from human feedback (RLHF): RL to improve 
human judgments of how good the outputs are

‣ We want to optimize models for P(answer | prompt, input), but they’re 
learned on a basic language modeling objective

Alignment

Step 0: 
Unsupervised pre-training 

(tons of data; >1T tokens)

Step 1: 
Supervised fine-tuning 

on human demos

Step 2: 
Fit a reward model 

to human preferences 
over  samplesπSFT

Step 3: 
Optimize a policy to 

maximize learned rewards
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Figure: Eric Mitchell (via Yoav Artzi)

Instruction Tuning

Encoder-Decoder Models: T5

Raffel et al. (2019)

‣ Pre-training: not quite vanilla language modeling, but a “denoising” 
scheme to BERT

‣ Input: text with gaps. Output: a series of phrases to fill those gaps.



T5

‣ T5 was designed to be trained on many tasks and map from inputs 
to outputs

‣ Colossal Cleaned Common Crawl: 750 GB of text

Raffel et al. (2019)

summarization machine translation

Task Generalization: T0

Sanh et al. (2021)

‣ T0: tries to deliver on the goal of T5 
and do many tasks with one model

‣ Crowdsourced prompts: 
instructions for how to do the tasks

Task Generalization

Sanh et al. (2021)

‣ Train: a collection 
of tasks with 
prompts. This uses 
existing labeled 
training data

‣ Test: a new task 
specified only by a 
new prompt. No 
training data in this 
task

Train Test‣ Pre-train: T5 task

Flan-PaLM

Chung et al. (2022)

‣ Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model fine-tuned on 
many tasks after pre-training



Flan-PaLM

Chung et al. (2022)

‣ Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model

‣ MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

Flan-PaLM

Chung et al. (2022)

‣ Flan-PaLM (October 20, 2022): 1800 tasks, 540B parameter model

‣ MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

Flan-PaLM

Chung et al. (2022)

‣ Human performance estimates are ~80 on Big-Bench (BBH)

Self-Instruct/Alpaca

Ronen Taori et al. (2023) Alpaca

‣ Fine-tune Llama on 52k outputs with answers 
generated by text-davinci-003

Yizhong Wang et al. (2023) Self-Instruct



The Llama 2 Recipenew technique, Ghost Attention (GAtt), which we find helps control dialogue flow over multiple turns
(Section 3.3). See Section 4.2 for safety evaluations on fine-tuned models.

3.1 Supervised Fine-Tuning (SFT)

‰ Prompt: Write a poem to help me remember the first 10 elements on the periodic table, giving each
element its own line.

Response: Hydrogen comes first as element number one.
Helium is second for balloons to have fun!
In third place is Lithium to hold battery charge,
Followed by Beryllium in emeralds small and large.
Boron’s number five to help us keep things clean.
Carbon’s next at six, and it’s found in every gene.
Nitrogen is seven, found in every breath we take,
More than eight (or Oxygen) in atmospheric make.
Number nine is Fluorine, helping polish up our teeth.
Neon gives us glowing signs to read and stand beneath.

‰ Prompt: I want you to roast me. I want you to make it particularly brutal, swearing at me.
Response: I’m sorry, but I cannot comply with that request. Using vulgar language or intentionally

hurting someone’s feelings is never acceptable. Instead of asking for a roast, I suggest
focusing on positive and constructive feedback that can help you grow and improve as an
individual. If you’re looking for comedic relief, there are plenty of other ways to achieve
that without resorting to hurtful language or behavior.

Table 5: SFT annotation — example of a helpfulness (top) and safety (bottom) annotation for SFT, where the
annotator has written both the prompt and its answer.

Getting Started. To bootstrap, we started the SFT stage with publicly available instruction tuning
data (Chung et al., 2022), as utilized previously in Touvron et al. (2023).

Quality Is All You Need. Third-party SFT data is available from many di�erent sources, but we found that
many of these have insu�cient diversity and quality— in particular for aligning LLMs towards dialogue-style
instructions. As a result, we focused first on collecting several thousand examples of high-quality SFT data,
as illustrated in Table 5. By setting aside millions of examples from third-party datasets and using fewer but
higher-quality examples from our own vendor-based annotation e�orts, our results notably improved. These
findings are similar in spirit to Zhou et al. (2023), which also finds that a limited set of clean instruction-tuning
data can be su�cient to reach a high level of quality. We found that SFT annotations in the order of tens of
thousands was enough to achieve a high-quality result. We stopped annotating SFT after collecting a total of
27,540 annotations. Note that we do not include any Meta user data.
We also observed that di�erent annotation platforms and vendors can result in markedly di�erent down-
stream model performance, highlighting the importance of data checks even when using vendors to source
annotations. To validate our data quality, we carefully examined a set of 180 examples, comparing the annota-
tions provided by humans with the samples generated by the model through manual scrutiny. Surprisingly,
we found that the outputs sampled from the resulting SFT model were often competitive with SFT data
handwritten by human annotators, suggesting that we could reprioritize and devote more annotation e�ort
to preference-based annotation for RLHF.

Fine-Tuning Details. For supervised fine-tuning, we use a cosine learning rate schedule with an initial
learning rate of 2⇥ 10�5, a weight decay of 0.1, a batch size of 64, and a sequence length of 4096 tokens.
For the fine-tuning process, each sample consists of a prompt and an answer. To ensure the model sequence
length is properly filled, we concatenate all the prompts and answers from the training set. A special token is
utilized to separate the prompt and answer segments. We utilize an autoregressive objective and zero-out
the loss on tokens from the user prompt, so as a result, we backpropagate only on answer tokens. Finally, we
fine-tune the model for 2 epochs.

9

•Emphasize data quality	

•Hire third-party annotators	

•Develop guidelines that match 
the desired model behavior	

•Llama 2 focus: helpfulness and 
safety	

•Collect 27,540 examples	

•Goal: less the strongest 
possible model, more good 
starting point for RLHF

Slide credit: Yoav Artzi

Modern Methods
‣ MAmmoTH2: extract 
instruction data from the web 
(using LLMs to reformulate it)

‣ MAGPIE: generate user 
prompts and then the 
responses from scratch using 
an LLM, then filter them and 
train on that data

Reinforcement Learning from 
Human Feedback (RLHF)

RLHF

Ouyang et al. (2022)

‣ Apply this approach to 
optimizing outputs from 
large language models

‣ Step 3 (not shown): do RL 
with this policy



Learning Reward Models

Ouyang et al. (2022)

‣ Input x: who was the US president during World War II?

‣ Outputs y+: Franklin D. Roosevelt, Harry Truman

‣ Classical RL: assign some value +3 to this output

‣ Should we just get humans to label rewards? What scale do we use? 
What score should this get?

Learning Reward Models

Ouyang et al. (2022)

‣ Input x: who was the US president during World War II?

‣ Outputs y+: Franklin D. Roosevelt, Harry Truman
y-: Herbert Hoover, Franklin D. Roosevelt, Harry Truman

<latexit sha1_base64="vbH1M4Kw6y2EkvcM4Pbna+4QlTM="></latexit>

P (y+ � y� | x) = exp(r(y+,x))

exp(r(y+,x)) + exp(r(y�,x))

‣ Bradley-Terry model: turns scores into log probabilities of 1 being 
preferred to 2. Same as logistic regression where we classify pairs as 1 
> 2 or 2 < 1, but we learn a continuous scoring function

Learning Reward Models

Ouyang et al. (2022)

‣ Input x: who was the US president during World War II?

‣ Outputs y+: Franklin D. Roosevelt, Harry Truman
y-: Herbert Hoover, Franklin D. Roosevelt, Harry Truman

<latexit sha1_base64="vbH1M4Kw6y2EkvcM4Pbna+4QlTM="></latexit>

P (y+ � y� | x) = exp(r(y+,x))

exp(r(y+,x)) + exp(r(y�,x))

‣ Outcome: reward model r(y, x) returning real-valued scores

Lots of (y+,y-) pairs

RLHF

Christiano et al. (2017)

‣ Goal: find a policy       (LM parameters) that optimizes the following:

<latexit sha1_base64="B7t35RqOKJc7+iQMnqSmbjxUvD0="></latexit>

R(x, y) = r(x, y)� �DKL(⇡✓(y | x)k⇡SFT
✓ (y | x))

<latexit sha1_base64="PA5Eh0OH5mYgRmX1QtYeliUCpZ8="></latexit>⇡✓

get high	
reward

stay close to an initial	
SFT policy

‣ This is called proximal policy optimization (PPO)

‣ Important to regularize towards the SFT policy! Reward models are not 
stable enough to make things work

‣ PPO has some details in its implementation: it’s an advantage actor-critic 
model, so there’s a separate value function that gets learned



RLHF

‣ For OpenAI, RLHF data is collected from their API. Very different from 
instruct-tuning datasets Ouyang et al. (2022)

What does RLHF do?

Singhal, Goyal, Xu, Durrett (COLM 2024)

‣ Reward models trained on open datasets have high correlations with 
length

What does RLHF do?

31

Length accounts for 85% of 
reward improvement

Overall reward 
gain from PPO 

training

On older preference dataset, most reward optimization was attributable to shifting 
to longer outputs! (Modern datasets are much bigger and this effect is reduced)

Average bin reward 
(SFT model outputs)

Average bin reward 
(RLHF model outputs)

WebGPT

Improvement 
within length-
controlled bins

(Prasann Singhal, Tanya Goyal, Jiacheng Xu, GD, COLM 2024 oral spotlight)

Direct Preference Optimization 
(DPO)



Direct Preference Optimization (DPO)

Slide credit: Yoav Artzi

•Adopt an alternative offline RL setup	

- Offline RL uses a static set of trajectories with rewards, rather than new trajectories 
during learning (like we saw in REINFORCE and PPO)	

•Restrict the reward to a specific form 	

•Combine the reward learning objective with an RL objective to directly optimize a policy

Figure 1: DPO optimizes for human preferences while avoiding reinforcement learning. Existing methods
for fine-tuning language models with human feedback first fit a reward model to a dataset of prompts and
human preferences over pairs of responses, and then use RL to find a policy that maximizes the learned reward.
In contrast, DPO directly optimizes for the policy best satisfying the preferences with a simple classification
objective, fitting an implicit reward model whose corresponding optimal policy can be extracted in closed form.

we will show that the RL-based objective used by existing methods can be optimized exactly with a
simple binary cross-entropy objective, greatly simplifying the preference learning pipeline.

At a high level, existing methods instill the desired behaviors into a language model using curated
sets of human preferences representing the types of behaviors that humans find safe and helpful. This
preference learning stage occurs after an initial stage of large-scale unsupervised pre-training on
a large text dataset. While the most straightforward approach to preference learning is supervised
fine-tuning on human demonstrations of high quality responses, the most successful class of methods
is reinforcement learning from human (or AI) feedback (RLHF/RLAIF; [12, 2]). RLHF methods fit
a reward model to a dataset of human preferences and then use RL to optimize a language model
policy to produce responses assigned high reward without drifting excessively far from the original
model. While RLHF produces models with impressive conversational and coding abilities, the RLHF
pipeline is considerably more complex than supervised learning, involving training multiple LMs and
sampling from the LM policy in the loop of training, incurring significant computational costs.

In this paper, we show how to directly optimize a language model to adhere to human preferences,
without explicit reward modeling or reinforcement learning. We propose Direct Preference Optimiza-
tion (DPO), an algorithm that implicitly optimizes the same objective as existing RLHF algorithms
(reward maximization with a KL-divergence constraint) but is simple to implement and straight-
forward to train. Intuitively, the DPO update increases the relative log probability of preferred to
dispreferred responses, but it incorporates a dynamic, per-example importance weight that prevents
the model degeneration that we find occurs with a naive probability ratio objective. Like existing
algorithms, DPO relies on a theoretical preference model (such as the Bradley-Terry model; [5]) that
measures how well a given reward function aligns with empirical preference data. However, while
existing methods use the preference model to define a preference loss to train a reward model and
then train a policy that optimizes the learned reward model, DPO uses a change of variables to define
the preference loss as a function of the policy directly. Given a dataset of human preferences over
model responses, DPO can therefore optimize a policy using a simple binary cross entropy objective,
producing the optimal policy to an implicit reward function fit to the preference data.

Our main contribution is Direct Preference Optimization (DPO), a simple RL-free algorithm for
training language models from preferences. Our experiments show that DPO is at least as effective
as existing methods, including PPO-based RLHF, for learning from preferences in tasks such as
sentiment modulation, summarization, and dialogue, using language models with up to 6B parameters.

2 Related Work

Self-supervised language models of increasing scale learn to complete some tasks zero-shot [31] or
with few-shot prompts [6, 25, 11]. However, their performance on downstream tasks and alignment
with user intent can be significantly improved by fine-tuning on datasets of instructions and human-
written completions [23, 36, 13, 39]. This ‘instruction-tuning’ procedure enables LLMs to generalize
to instructions outside of the instruction-tuning set and generally increase their usability [13]. Despite
the success of instruction tuning, relative human judgments of response quality are often easier to
collect than expert demonstrations, and thus subsequent works have fine-tuned LLMs with datasets of
human preferences, improving proficiency in translation [18], summarization [38, 49], story-telling
[49], and instruction-following [26, 32]. These methods first optimize a neural network reward
function for compatibility with the dataset of preferences under a preference model such as the
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Direct Preference Optimization (DPO)

Slide credit: Yoav Artzi

•DPO starts with a very similar RL objective to PPO	

 	

- Where  is the SFT policy before we fine-tune it with preference data

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]
πref

Maximize the expected 
reward according to our 
prompt data and policy

Penalize for the distribution 
getting further from the pre-

RL distribution 

Direct Preference Optimization (DPO)

Slide credit: Yoav Artzi

•DPO starts with a very similar RL objective to PPO	

	

- Where  is the SFT policy before we fine-tune it with preference data

arg maxθ Ex̄∼𝒟,ȳ∼πθ(ȳ|x̄)[r(x̄, ȳ) − βKL[πθ(ȳ | x̄), π
ref

(ȳ | x̄)]]
πref

π*(ȳ | x̄) = 1
Z(x̄) πref(ȳ | x̄)exp( 1

β r(x̄, ȳ))

r(x̄, ȳ) = β log π*(ȳ | x̄)
πref(ȳ | x̄) + β log Z(x̄)

•The optimal policy takes this form	
(according to theoretical results from RL)

•We can rearrange that to give:

•Combine this with Bradley-Terry and…

Direct Preference Optimization (DPO)

Rafailov et al. (2023)

‣ Through some manipulation, it can be shown that the optimal policy	
for RLHF satisfies the preference model

<latexit sha1_base64="P8LjxrH3pLaUItzw7EEMuk8bdhM="></latexit>

⇡⇤

‣ We can now learn the policy directly to optimize the log likelihood of the 
preference data in a fashion that looks like supervised learning:

ref = SFT policy. preferred output should be more likely under	
our learned policy than under reference, dispreferred output should be less likely



Direct Preference Optimization (DPO)

Slide credit: Yoav Artzi

• The DPO gradient is:





where 

∇ℒDPO(θ) =

−βE(x̄,ȳw,ȳl)∼𝒟[σ( ̂rθ(x̄, ȳl) − ̂rθ(x̄, ȳw))[∇log πθ(ȳw | x̄) − ∇log πθ(ȳl | x̄)]]

̂r(x̄, ȳ) = β log
πθ(ȳ | x̄)
πref(ȳ | x̄)

 functions like a 
“learning rate” 
following the 

strength of the KL 
constraint

β Per-example 
weight: higher 

weight when the 
reward model is 

wrong

Increase 
likelihood of 

preferred example

Decrease 
likelihood of 
dispreferred 

example

Outcome of RLHF/DPO
‣ RLHF produces an “aligned” model that should achieve high reward

‣ Best-of-n: sample n responses from an SFT model, take the best one 
according to the reward function

‣ Pro: training-free
‣ Cons: expensive, may not deviate far from the initial SFT model

‣ Preference tuning: apply SFT on preferred outputs
‣ Pro: simple. Cons: doesn’t use the negative examples

‣ Baselines:

Direct Preference Optimization (DPO)

Rafailov et al. (2023)

‣ Evaluation: win rate (as scored by an LLM)

RLHF in practice

Touvron et al. (2023)

RLHF data for Llama 2
‣ They do 5 iterations of (train, get more preferences, get new reward model). 
First 3 iterations: just fine-tuning best-of-n, then they used PPO

‣ Current approaches: many papers exploring versions with active data 
collection (e.g., tune with DPO -> collect preferences -> keep tuning …)



Evaluating LLMs

Death of Benchmarks

Goyal, Li, Durrett (2023)

‣ Many classic tasks and metrics were saturated when ChatGPT came out 

‣ “Tests” like MMLU are very artificial, and we want to judge long-form 
responses

LLM-as-a-Judge

Hamish Ivison et al. (2024)

‣ Get responses from two models, ask GPT-4 which one is better

‣ “Win rate”: if you compare model A vs. model B, what fraction of 
the time does it win?

‣ Sometimes use win rate against a fixed target (e.g., GPT-3.5), like on 
the next slide

DPO/PPO Comparison

Hamish Ivison et al. (2024)



Data settings

Hamish Ivison et al. (2024)

‣ Upvotes/downvotes on StackExchange (synthetic 
dataset of human preferences)

‣ Human preferences (discussed on next slide)

‣ GPT-4 preferences over a big dataset

‣ GPT-4 preferences over a big dataset

‣ Human annotated data, but a bit older

Chatbot Arena: Elo Rankings

Chatbot Arena: Elo Rankings

‣ Accepted as one of the 
premiere rankings for 
LLMs

‣ Style control was 
introduced as it was 
believed that the 
“style” of responses 
had a big effect

Takeaways

‣ Instruction-tuning and RLHF are two procedures that take LMs to 
the next level — these models work dramatically better than basic 
GPT-3

‣ These are the foundation of modern chatbots (along with lots of 
pre-training data), very exciting capabilities in these LLM agents

‣ Evaluating where these models are is tough, requires human 
intervention or trust that LLMs are doing reasonable things…


