CS371N: Natural Language Processing Lecture 23: Machine Translation

Star Wars The Third Gathers: The Backstroke of the West (subtitles machine translated from Chinese)

Administrivia

- ► FP check-ins due in 9 days
- ► Course evaluations: submit proof for extra credit on final project
- ► A5 grading underway

Greg Durrett

Today's Lecture

- MT basics
- ▶ Phrase-based MT, word alignment
- Multilingual and cross-lingual models
- MT frontiers

MT Basics

MT in Practice

▶ Bitext: this is what we learn translation systems from. What can you learn?

Je fais un bureau l'm making a desk

Je fais une soupe I'm making soup

Je fais un bureau I make a desk

Qu'est-ce que tu fais? What are you doing?

What makes this hard? Not word-to-word translation

Multiple translations of a single source (ambiguous)

Evaluating MT

What should our evaluation goals be?

Evaluating MT

- Fluency: does it sound good in the target language?
- ► Fidelity/adequacy: does it capture the meaning of the original?
- Classic autuomatic metric: BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty (penalizes short translations)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
 Typically $n = 4$, $w_i = 1/4$

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{array} \right. \quad \text{r = length of reference} \\ \text{c = length of prediction}$$

Which of these criteria does it capture?

Phrase-based MT, Word Alignment

Phrase-Based MT

- ▶ Key idea: translation works better the bigger chunks you use
- Remember phrases from training data, translate piece-by-piece and stitch those pieces together to translate
- ► How to identify phrases? Word alignment over source-target bitext
- ▶ How to stitch together? Language model over target language
- Decoder takes phrases and a language model and searches over possible translations
- NOT like standard discriminative models (take a bunch of translation pairs, learn a ton of parameters in an end-to-end way)

1-to-Many Alignments

Word Alignment

- ► Models P(t|s): probability of "target" sentence being generated from "source" sentence according to a model
- Latent variable model: $P(\mathbf{t}|\mathbf{s}) = \sum_{\mathbf{a}} P(\mathbf{t}|\mathbf{a},\mathbf{s})P(\mathbf{a})$
- Correct alignments should lead to higher-likelihood generations, so by optimizing this objective we will learn correct alignments

IBM Model 1

► Each target word is aligned to at most one source word

$$P(\mathbf{t}, \mathbf{a} \mid \mathbf{s}) = \prod_{i=1}^{n} P(t_i \mid s_{a_i}) P(a_i)$$

s Thank you , I shall do so gladly

- lo hare de muy buen grado
- Set P(a) uniformly (no prior over good alignments)
- ${}^{ullet}P(t_i\mid s_{a_i})$: word translation probability table. Learn with EM Brown et al. (1993)

IBM Model 1: Example

s = Je

t = 1

$$P(\mathbf{t}, \mathbf{a} \mid \mathbf{s}) = \prod_{i=1}^{n} P(t_i \mid s_{a_i}) P(a_i)$$

I like eat

0.8 0.1 0.1

0.8 0.1 0.1

mange 0

aime 1.0

What is $P(t, a \mid s)$? NULL 0.4 0.3 0.3 What is $P(\mathbf{a} \mid \mathbf{t}, \mathbf{s})$?

Brown et al. (1993)

NULL

IBM Model 1: Example 2

$$P(\mathbf{t},\mathbf{a}\mid\mathbf{s})=\prod_{i=1}^nP(t_i\mid s_{a_i})P(a_i)$$
 I like eat
$$\mathbf{s}=\mathbf{J'}\quad\text{ aime}$$
 Je 0.8 0.1 0.1
$$\mathbf{t}=\mathbf{l}\quad\text{ like}$$
 J' 0.8 0.1 0.1

mange 0 0 1.0

aime 0 1.0 0

NULL 0.4 0.3 0.3 What is $P(a_1 \mid t, s)$?

Brown et al. (1993)

NULL

Learning with EM

- ► E-step: estimate P(a | t, s)
- M-step: treat P(a | t, s) as "pseudo-labels" for the data. Read off counts + normalize
- ► Common unsupervised learning method for latent variable models

Brown et al. (1993)

HMM for Alignment

Sequential dependence between a's to capture monotonicity

$$P(\mathbf{t}, \mathbf{a} \mid \mathbf{s}) = \prod_{i=1}^{n} P(t_i \mid s_{a_i}) P(a_i \mid a_{i-1})$$

e Thank you, I shall do so gladly.

f Gracias, lo hare de muy buen grado

• Alignment dist parameterized by jump size: $P(a_i - a_{i-1})$ –

Vogel et al. (1996)

HMM Model

- Alignments are generally monotonic (along diagonal)
- Some mistakes, especially when you have rare words (garbage collection)

Phrase Extraction

 Find contiguous sets of aligned words in the two languages that don't have alignments to other words

d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion and ||| the meeting and nous ||| we

Lots of phrases possible, count across all sentences and score by frequency

Phrase-Based Decoding

- ► Inputs:
 - n-gram language model: $P(e_i|e_1,\ldots,e_{i-1}) \approx P(e_i|e_{i-n-1},\ldots,e_{i-1})$
 - ► Phrase table: set of phrase pairs (e, f) with probabilities P(f|e)
- What we want to find: e produced by a series of phrase-by-phrase translations from an input f, possibly with reordering:

Uses a beam search algorithm. We will not discuss

Cross-Lingual, Multilingual Word Representations

Multilingual Embeddings

- ► MT involves directly mapping between strings in different languages
- Potentially easier task: learn model that can do the same task in multiple languages? E.g., do POs tagging in both English and French, do a QA in 10 languages, etc.
- We'll see some neural techniques that can do this, then come back to translation

Multilingual Embeddings

Input: corpora in many languages. Output: embeddings where similar words in different languages have similar embeddings

I have an apple 47 24 18 427

J' ai des oranges 47 24 89 1981

- multiCluster: use bilingual dictionaries to form clusters of words that are translations of one another, replace corpora with cluster IDs, train "monolingual" embeddings over all these corpora
- Works okay but not all that well

Ammar et al. (2016)

Multilingual BERT

- ► Take top 104 Wikipedias, train BERT on all of them simultaneously
- What does this look like?

Beethoven may have proposed unsuccessfully to Therese Malfatti, the supposed dedicatee of "Für Elise"; his status as a commoner may again have interfered with those plans.

当人们在马尔法蒂身后发现这部小曲的手稿时,便误认为上面写的是"Für Elise"(即《给爱丽丝》)[51]。

Кита́й (официально — Кита́йская Наро́дная Респу́блика, сокращённо — КНР; кит. трад. 中華人民共和國, упр. 中华人民共和

国, пиньинь: Zhōnghuá Rénmín Gònghéguó, палл.: Чжунхуа Жэньминь

Гунхэго) — государство в Восточной Аз

Devlin et al. (2019)

Multilingual BERT: Results

Fine-tuning \ Eval	EN	DE	ES	IT
EN	96.82	89.40	85.91	91.60
DE	83.99	93.99	86.32	88.39
ES	81.64	88.87	96.71	93.71
IT	86.79	87.82	91.28	98.11

Table 2: Pos accuracy on a subset of UD languages.

- ► Can transfer BERT directly across languages with some success
- ...but this evaluation is on languages that all share an alphabet

 Pires et al. (2019)

Multilingual BERT: Results

	HI	UR		EN	BG	JA
HI	97.1	85.9	EN	96.8	87.1	49.4
UR	91.1	93.8	BG	82.2	98.9	51.6
			JA	57.4	67.2	96.5

Table 4: POS accuracy on the UD test set for languages with different scripts. Row=fine-tuning, column=eval.

- Urdu (Arabic/Nastaliq script) => Hindi (Devanagari). Transfers well despite different alphabets!
- Japanese => English: different script and very different syntax

Pires et al. (2019)

Scaling Up: XLM-R

Figure 1: Amount of data in GiB (log-scale) for the 88 languages that appear in both the Wiki-100 corpus used for mBERT and XLM-100, and the CC-100 used for XLM-R. CC-100 increases the amount of data by several orders of magnitude, in particular for low-resource languages.

- ► Larger "Common Crawl" dataset, better performance than mBERT
- ► Low-resource languages benefit from training on other languages
- → High-resource languages see a small performance hit, but not much

Conneau et al. (2019)

Scaling Up: Benchmarks

Task	Corpus	Train	Dev	Test	Test sets	Lang.	Task
G1 'C '	XNLI	392,702	2,490	5,010	translations	15	NLI
Classification	PAWS-X	49,401	2,000	2,000	translations	7	Paraphrase
Stancet and	POS	21,253	3,974	47-20,436	ind. annot.	33 (90)	POS
Struct. pred.	NER	20,000	10,000	1,000-10,000	ind. annot.	40 (176)	NER
	XQuAD	87,599	34,726	1,190	translations	11	Span extraction
QA	MLQA	87,399	34,720	4,517-11,590	translations	7	Span extraction
	TyDiQA-GoldP	3,696	634	323-2,719	ind. annot.	9	Span extraction
Retrieval	BUCC	-	-	1,896–14,330	-	5	Sent. retrieval
	Tatoeba	-	-	1,000	-	33 (122)	Sent. retrieval

- ► Many of these datasets are translations of base datasets, not originally annotated in those languages
- Exceptions: POS, NER, TyDiQA

Hu et al. (2021)

► Typologicallydiverse QA dataset

Annotators write questions based on very short snippets of articles; answers may or may not exist, fetched from elsewhere in Wikipedia

TyDiQA

Q: Как далеко Уран how far Uranus-SG.Nom from Земл-и?

Earth-SG.GEN?

How far is Uranus from Earth?

А: Расстояние между Уран-ом

distance between Uranus-SG.INSTR меняется от 2,6

и Земл-ёй and Earth-SG.INSTR varies from 2.6

до 3,15 млрд км... to 3,15 bln km...

The distance between Uranus and Earth fluc-

tuates from 2.6 to 3.15 bln km...

Clark et al. (2021)

Transformer MT + Frontiers

Transformers

Model	BLEU			
Model	EN-DE	EN-FR		
ByteNet [18]	23.75			
Deep-Att + PosUnk [39]		39.2		
GNMT + RL [38]	24.6	39.92		
ConvS2S [9]	25.16	40.46		
MoE [32]	26.03	40.56		
Deep-Att + PosUnk Ensemble [39]		40.4		
GNMT + RL Ensemble [38]	26.30	41.16		
ConvS2S Ensemble [9]	26.36	41.29		
Transformer (base model)	27.3	38.1		
Transformer (big)	28.4	41.8		

Big = 6 layers, 1000 dim for each token, 16 heads,
 base = 6 layers + other params halved

Vaswani et al. (2017)

Frontiers in MT: Small Data

		BLEU		
ID	system	100k	3.2M	
1	phrase-based SMT	15.87 ± 0.19	26.60 ± 0.00	
2	NMT baseline	0.00 ± 0.00	25.70 ± 0.33	
3	2 + "mainstream improvements" (dropout, tied embeddings, layer normalization, bideep RNN, label smoothing)	7.20 ± 0.62	31.93 ± 0.05	
4	3 + reduce BPE vocabulary (14k \rightarrow 2k symbols)	12.10 ± 0.16	-	
5	$4 + \text{reduce batch size } (4k \rightarrow 1k \text{ tokens})$	12.40 ± 0.08	31.97 ± 0.26	
6	5 + lexical model	13.03 ± 0.49	31.80 ± 0.22	
7	5 + aggressive (word) dropout	15.87 ± 0.09	33.60 ± 0.14	
8	7 + other hyperparameter tuning (learning rate, model depth, label smoothing rate)	16.57 ± 0.26	32.80 ± 0.08	
9	8 + lexical model	16.10 ± 0.29	33.30 ± 0.08	

► Synthetic small data setting: German -> English Sennrich and Zhang (2019)

Frontiers in MT: Low-Resource

 Particular interest in deploying MT systems for languages with little or no parallel data

Burmese, Indonesian, Turkish BLEU

- BPE allows us to transfer models even without training on a specific language
- Pre-trained models can help further
- Transfer
 My→En Id→En Tr→En

 baseline (no transfer)
 4.0
 20.6
 19.0

 transfer, train
 17.8
 27.4
 20.3

 transfer, train, reset emb, train
 13.3
 25.0
 20.0

 transfer, train, reset inner, train
 3.6
 18.0
 19.1

Table 3: Investigating the model's capability to restore its quality if we reset the parameters. We use En \to De as the parent.

Aji et al. (2020)

Frontiers in MT: Low-Resource

		BLEU						
Transf	ferring	De→En parent			En			
Emb.	Inner	My→En	$Id \rightarrow En$	$Tr \rightarrow En$	My→En	$Id \rightarrow En$	$Tr \rightarrow En$	avg.
Y	Y	17.8	27.4	20.3	17.5	27.5	20.2	21.7
N	Y	13.6	25.3	19.4	10.8	24.9	19.3	18.3
Y	N	3.0	18.2	19.1	3.4	18.8	18.9	13.7
N	N	4.0	20.6	19.0	4.0	20.6	19.0	14.5

Table 2: Transfer learning performance by only transferring parts of the network. Inner layers are the non-embedding layers. N = not-transferred. Y = transferred.

 Very important to transfer the basic Transformer "skills", but re-learning the embeddings seems fine in many cases

Aji et al. (2020)

Frontiers in MT: ChatGPT

Table 3: Comparison of different prompts for ChatGPT to perform Chinese-to-English (Zh⇒En) translation.

System	BLEU↑	ChrF++↑	TER↓
Google	31.66	57.09	56.21
DeepL	31.22	56.74	57.84
Tencent	29.69	56.24	57.16
ChatGPT w/ TP1	23.25	53.07	66.03
ChatGPT w/ TP2	24.54	53.05	63.79
ChatGPT w/ TP3	24.73	53.71	62.84

 Works okay for Chinese-English, but less good at generating into lowresource languages (English -> Romanian doesn't work well)

"Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine" Jia et al. (2023)

Frontiers: Evaluation with LLMs

Score the following translation from {source_lang} to {target_lang} with respect to the human reference on a continuous scale from 0 to 100, where score of zero means "no meaning preserved" and score of one hundred means "perfect meaning and grammar".

```
{source_lang} source: "{source_seg}" {target_lang} human reference: {reference_seg} {target_lang} translation: "{target_seg}" Score:
```

Figure 1: The best-performing prompt based on Direct Assessment expecting a score between 0–100. Template **portions in bold face** are used only when a human reference translation is available.

 Outperforms many learned MT metrics (Transformers trained over (source, target, reference) triples to reproduce human judgments of quality)

Kocmi et al. (2023)

Takeaways

- Word alignment is a way to learn unsupervised correspondences between words and build phrase tables
- Phrase-based MT was SOTA for a long time (and until the past couple of years was still best for low-resource settings)
- Transformers are state-of-the-art for machine translation
- They work really well on languages where we have a ton of data. When they don't: pre-training can help