Announcements
CS371N: Natural Language Processing

> Check-ins due tomorrow, will be graded as promptly as we can

Lecture 25:
Efficiency and LLMs

Greg Durrett

This Lecture

> Decoding optimizations: exact decoding, but faster
> Speculative decoding

> Medusa heads

> Flash attention

Decoding Optimizations

> Model compression

> Pruning LLMs

> Distilling LLMs

> Parameter-efficient tuning

> LLM quantization

Decoding Basics

| saw the dog runmng to

t t t

[11][|

| i t f L transformer
i i i layers

[][][][

<s> I saw the dog runnlng to

Prompt (prefix of p tokens) Decoded tokens (k)

Operations for one decoder pass: O(pL) Number of layers in decoder

Operations for k decoder passes: O(pk2L) (non-parallelizable): O(kL)

Speculative Decoding

I saw the dog running to the house quickly
t 1 t t 1 t t t t
[]] I I[] []]]]
|T t t t t | | t t t t
t i t i i t t i i
[I I Il]! []] [] [|
<s> | saw the dog running to the house

Prompt (prefix of p tokens) Decoded tokens (k)

» Key idea a forward pass for several tokens at a time is O(L) serial
steps, since the tokens can be computed in parallel

> Can we predict many tokens with a weak model and then “check”
them with a single forward pass?

Speculative Decoding

| saw the dog running Distribution over vocabulary

t t t t t t

[][][IL I[] []

| t t t 1 t | |:l‘:|
i t i t t

[]!]! Il Il [|
<s> | saw the dog running

Prompt (prefix of p tokens) Decoded tokens (k)

> When sampling, we need the whole distribution

> When doing greedy decoding, we only need to know what token was
the max

Speculative Decoding

I saw the dog running to the house quickly

t t t t t t t t t
[][][I I[] []]]]
| t t t 1 t | | t t t t

t i t i i t t i i
[Il Il]! Il | | |] [|
<s> | saw the dog running to the house

Prompt (prefix of p tokens) Decoded tokens (k)

> We can use a small, cheap model to do inference, then check that
“to”, “the”, “house”, “quickly” are really the best tokens from a

bigger model Leviathan et al. (2023)

Speculative Decoding: Flow

I saw the dog running to the house quickly

t t t t t

| DRAFT | |DRAFT| |DRAFT| |DRAFT| |DRAFT|

<s> | saw the dog running to the house

> Produce decoded tokens one at a time from a fast draft model...

I saw the dog running to the house quickly

t t t t t t t t t
MAIN MAIN
<s> | saw the dog running to the house

> Confirm that the tokens are the max tokens from the slower main model.

Any “wrong” token invalidates the rest of the sequence

Speculative Decoding

[START] japan * Leviathan et al. (2023)

10

benchmark berd n

[START] japan ' s benchmark nikkei 22 ;5

[START] japan ' s benchmark nikkei 225 index rose 22 =6

—— —_— i

[START] japan ' benchmark nikkei 225 index rose 226 . 69 points , or 6 1

—— — oW

H
:

[START] japan ' s benchmark E.i_'flﬁi' 225 m rose 226 . 69 m
H

[START] japan ' s

benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 9859

> Can also adjust this to use sampling. Treat this as a proposal distribution
g(x) and may need to reject + resample (rejection sampling)

Speculative Decoding

Inputs: M,, My, prefiz.

> Sample «y guesses z1

for i =1toydo
¢(z) < My(prefiz + [z1,...,zi-1])

~ from M, autoregressively.

> Find the first index that was
rejected by the sampling

T~ (Ii(x)
procedure, then resample from end for
there >Run M), in parallel.

P1(2), - - s Pyy1(T)
My(prefiz),..., My(prefiz + [z1,...,,])
> Determine the number of accepted guesses n.
ry ~U(0,1),...,7, ~U(0,1)
nmn{i—1]1<i<y,r> Zg))}u{’y})
> Adjust the distribution from M, if needed.
P(@) < pai(2)
if n < <y then
P/(@) + norm(maz(0, pus1 () — gus (2)))
end if
> Return one token from M, and n tokens from M,,.
. t~p'(z)
Leviathan et al. (2023) return prefia + (21, 2, 1]

Medusa Heads

» The “draft model” consists (wormamon)
of multiple prediction
heads trained to predict the
next k tokens

£ Top-k Predictions

LM Head It, 1, As
= { l
& Medusa Heads
[Medusa Head 1 }»

Last Hidden

Transformer
Layers Medusa Head 2 }—

Medusa Head 3 }—*
Embedding
L J/

*Input Candidates / Single step prediction
What will happen if It is difficult not It is difficult
Medusa meets a llama? It difficult a X
Itis'not X ...

is, ', the]

difficult, is, ']

S o U

not, difficult, a]

https://www.together.ai/blog/medusa

Medusa Heads
- Mo oolelclolele

Medusa Heads

Speedup on different model sizes

(Head 1) Query v > Speedup with no loss in = = vioMdusa
accuracy! 80
S 60
> Evaluate multiple candidates 1O v v g
at once using a customized @ v v 240
g 1.94x
attention layer. In this image: ' v v e
2 x 3 candidates 20
= : ! .
‘ Q J J ° 7B 13B 33B
Tree Mask | | . v v Model Size
https://www.together.ai/blog/medusa ' https://www.together.ai/blog/medusa
: Other Decoding Improvements : Flash Attention
Outer Loop
> Most other approaches to speeding up require changing the model Attention on GPT-2
(making a faster Transformer) or making it smaller (distillation, vinxd | 1s] Matmul
pruning; discussed next) YA\ SRAM: 19TB/s (20 MB) S]Dropout
. 3:; HBM: 1.5 TB/s (40 GB) § R Compute ik : ijy g ém softmax
> Batching parallelism: improve throughput by decoding many examples in wanmemory | KSEL B, Fused
parallel. (Does not help with latency, and it’s a little bit harder to do in (CPUDRAM) (-1T8) il 13 Mask Kerel
production if requests are coming in asynchronously) Memory Hierarchy with 2 T e 0 I Matmul
Bandwidth & Memory Size SmQKV: Nxd PyTorch FlashAttention
> Low-level hardware optimizations? Inner Loop

> Easy things like caching (KV cache: keys + values for context tokens
are cached across multiple tokens)

. X FIashAtte_ntion 3 .
> Does extra computation during attention, but avoids expensive

reads/writes to GBU “high-bandwidth memory.” Recomputation is all
in SRAM and is very fast
> Essentially: store a running sum for the softmax, compute values as needed

Flash Attention

Models ListOps Text Retrieval Image Pathfinder | Avg | Speedup

Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 59.8 2.4x

Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8x

Linformer [84] 35.6 55.9 .7 37.8 67.6 54.9 2.5%

Linear Attention [50] 38.8 63.2 80.7 42.6 72.5 59.6 2.3x

Performer [12] 36.8 63.6 82.2 42.1 69.9 58.9 1.8x

Local Attention [80] 36.1 60.2 76.7 40.6 66.6 56.0 1.7x

Reformer [51] 36.5 63.8 78.5 39.6 69.4 57.6 1.3x

Smyrf [19] 36.1 64.1 79.0 39.6 70.5 57.9 1.7x

> Gives a speedup for free — with no cost in accuracy (modulo

numeric instability)

> Outperforms the speedup from many other approximate
Transformer methods, which perform substantially worse

Model Compression

Approaches to Compression

> Pruning: can we reduce the number of neurons in the model?

> Basic idea: remove low-magnitude weights

> Issue: sparse matrices are not fast, matrix multiplication is very
fast on GPUs so you don’t save any time!

Approaches to Compression
> Pruning: can we reduce the number of neurons in the model?
. Basicidea: ud .

> Instead, we want some kind of structured pruning. What does this look
like?

> Still a challenge: if different layers have different sizes, your GPU
utilization may go down

Sheared Llama

> ldea 1: M e 1
targeted
structured ,hidden—s
pruning

Source Model

> Parameterization and Ls=3,ds =6,Hs =4,ms =8

regularization encourage Sg:'ucr:;:ged
sparsity, even though the —

Z’s are continuous a a

. . Target Model
> Idea 2: continue training the model Ly =2,d7 =3,Hr =2,my =4

in its pruned state Mengzhou Xia et al. (2023)

Sheared Llama

Continued LM World Knowledge
Model (#okens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average
LLaMA2-7B enf 30.7 82.1 28.8 73.9 46.6 64.6
OPT-1.3B (3008)f 26.9 57.5 58.0 6.9 24.7 48.2
Pythia-1.4B o0B)" 273 574 61.6 6.2 25.7 489
Sheared-LLaMA-1.3B (s08) 26.9 64.0 61.0 9.6 25.7 51.0
OPT-2.7B (3008)f 26.0 63.4 63.6 10.1 259 51.4
Pythia-2.8B (300B)} 28.0 66.0 64.7 9.0 26.9 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 14.9 27.0 54.7
Open-LLaMA-3B-v1l a1 284 70.0 65.4 18.6 27.0 55.1
Open-LLaMA-3B-v2 ant 28.1 69.6 66.5 17.1 26.9 55.7
Sheared-LLaMA-2.7B (soB) 28.9 73.7 68.4 16.5 26.4 56.7

> (Slightly) better than models that were “organically” trained at these

larger scales .
Mengzhou Xia et al. (2023)

Approaches to Compression
> Pruning: can we reduce the number of neurons in the model?
. Basicidea: | . -

> Instead, we want some kind of structured pruning. What does this look
like?

> Knowledge distillation

> Classic approach from Hinton et al.: train a student model to match
distribution from teacher

DistilBERT

figure credit: Tianjian Li

Pre-trained Teacher | Zteacher
Network
Input
Data
Trainable Student | 7., .n. Knowledge
Network E— Distillation

Suppose we have a classification model with output Preacher(y | X)
Minimize KL(Preacher | | Pstudent) to bring student dist close to teacher

Note that this is not using labels — it uses the teacher to “pseudo-label”
data, and we label an entire distribution, not just a top-one label

DistilBERT

figure credit: Tianjian Li

Pre-trained Teacher | Zteacher
Network
Input
Data
Trainable Student | 7. ... Knoyvledge
Network —— Distillation

> Use a teacher model as a large neural network, such as BERT

> Make a small student model that is half the layers of BERT. Initialize with
every other layer from the teacher

Sanh et al. (2019)

DistilBERT

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo 68.7 44.1 68.6 76.6 711 862 534 915 70.4 56.3
BERT-base 79.5 56.3 86.7 88.6 91.8 896 693 927 89.0 53.5
DistilBERT ~ 77.0 513 82.2 87.5 892 885 599 913 86.9 56.3

Table 2: DistilBERT yields to comparable
performance on downstream tasks. Com-
parison on downstream tasks: IMDDb (test ac-
curacy) and SQuAD 1.1 (EM/F1 on dev set).
D: with a second step of distillation during

Table 3: DistilBERT is significantly smaller
while being constantly faster. Inference
time of a full pass of GLUE task STS-B (sen-
timent analysis) on CPU with a batch size of
1

fine-tuning.
Model #param. Inf. time
Model I(lilc)t)’ (SEQM“//I*:% (Millions) ~ (seconds)
BERT-base 9346 81.2/88.5 ELMo 130 895
= BERT-base 110 668
DistilBERT 92.82 77.7/85.8 Disti[BERT 66 410
DistiBERT (D) - 79.1/86.9

Sanh et al. (2019)

Other Distillation

Data Rationale

Premise: A person on a horse jumps over a broken down airplane.
Hypothesis: A person is training his horse for a competition

The person could be training his horse for a

competition, but it is not necessarily the case

Question: A gentleman is carrying equipment for golf, what is he
likely to have?

Answers: (a) club (b) assembly hall (c) meditation center (d)
meeting, (€) church

The answer must be something that is used for golf.
> LLM »Of the above choices, only clubs are used for golf. So
the answer is (a) club

Luke scored 84 points after 2 rounds. So he scored 84 ©4/2)
points in 2 rounds. 84 / 2 = 42. The answer is (84 / 2)

Luke scored 84 points after playing 2 rounds of a trivia game. If he
gained the same number of points each round. How many points
did he score per round?

Premise: A person on a horse jumps over a broken down airplane.

[label] + ——»| neutral

Hypothesis: A person is training his horse for a competition.

}» Smaller Model

> How to distill models for complex reasoning settings? Still an open
problem! Cheng-Yu Hsieh et al. (2023)

rationle] + |FTeSe: A person on a horse jumps over a broken down airplane. |

The person could be training his horse for a ‘

Hypothesis: A person is training his horse for a competition. competition, but it is not necessarily the case

Parameter-Efficient Tuning

Parameter-Efficient Tuning

> Rather than train all model parameters at once, can we get away with
just training a small number of them?

> What are the advantages of this?

> Typical advantages: lower memory, easier to serve many models for
use cases like personalization or multitasking

> Not an advantage: faster (it’s not)

BitFit
Qm,é(x) — W;n,éx + b;n,é hg — att(Ql’e,Kl’e,Vl’e, - Qm,€7Km,£’Vm,l)
Km,@(x) — Wz%fx + b':%@
Vml(x) = Wvix + bt

and then fed to an MLP with layer-norm (LN):

hf = Dropout(an1 -h¢ + bfnl) 1

h§ +x) —
hf =gly, © % +biy, @

hi= GELU(W.,-h{ + b.)) 3

hﬁ = Dropout(an3 . hf; + bfn3) “)

(hf +h§) —p
g

> Tune only the bias terms of
the Transformer architecture,
don’t fine-tune the weights

out’ =gf, © +biy,

> How many parameters do you
think this is?
Zaken et al. (2022)

BitFit

%Param QNLI SST-2 MNLI,, MNLIn, Avg.
Train size 105k 67k 393k 393k

(V) Full-FTt 100% 93.5 94.1 86.5 87.1 84.8
(V) Full-FT 100% 91.7+0.1 93.4+0.2 85.5+04 85.7+0.4 84.1
(V) Diff-Prunef 0.5% 93.4 94.2 86.4 86.9 84.6
(V) BitFit 0.08% 91.44+2.4 93.2+04 844402 84.8+0.1 84.2
(T) Full-FT} 100% 91.1 94.9 86.7 85.9 81.8
(T) Full-FT} 100% 93.4 94.1 86.7 86.0 81.5
(T) Adapters} 3.6% 90.7 94.0 84.9 85.1 81.1
(T) Diff-Prunet 0.5% 93.3 94.1 86.4 86.0 81.5
(T) BitFit 0.08% 92.0 94.2 84.5 84.8 80.9

> Degraded performance, but only train <0.1% of the parameters of

the full model!
Zaken et al. (2022)

LoRA

> Alternative: learn weight matrices as (W + BA), ——
where BA is a product of two low-rank matrices. A TR

> If we have a d x d matrix and we use a rank Pretrained

reduction of size r, what is the parameter Weights r
reduction from LoRA? W € Réxd
> Allows adding low-rank matrix on top of N ¢ A
x [

existing high-rank model
Figure 1: Our reparametriza-

> Unlike some other methods, LoRA can be tion. We only train A and B.
“compiled down” into the model (just add

BA into W)
Hu et al. (2021)

LoRA

Model & Method |# Trainable
Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBupase (FT)* 125.0M| 87.6 94.8 90.2 63.6 92.8 919 78.7 91.2 864
RoBuase (BitFit)* 0.1M| 84.7 937 92.7 62.0 91.8 84.0 81.5 90.8 85.2
ROBhase (Adpt®)* 0.3M[87.1+0 94.241 88.5+11 60.8+4 93.141 90210 71.5427 89.7+3 844
RoBpase (AdptD)* 09M (87341 94.713 88441 62.649 93.0+2 90.610 759422 9034+, 854 . .
RoBime (LoRA) 03M 87555 95117 89747 634112 93353 9084, 86.6.7 9155, 87.2 LLM Quantization
RoBiage (FT)* 355.0M| 90.2 964 90.9 68.0 94.7 922 86.6 924 88.9
RoBiage (LORA) 0.8M [90.6+> 96.215 90.9+12 68.2+19 94913 91.61; 874425 92.64+, 89.0

> LoRA is much better than BitFit, even better than vanilla fine-tuning
on GLUE!

Hu et al. (2021)

LLM Quantization LLM Quantization
> A significant fraction of LLM training is just storing the weights IEEE 754 Single Precision 32-bit Float (FP32) Exponent Fraction
. : . . ___ INNNNEEEEEEEEEERENEENENR 8 23
> Normal floating-point precision: 4 bytes per weight, gets large for
10B+ parameter models! IEEE 754 Half Precision 16-bit Float (FP16)
____RRNNNRENNN 5 o
> How much is needed for fine-tuning?
Google Brain Float (BF 16)
> The Adam optimizer has to store at least 2 additional values for T 8 .
each parameter (first- and second-moment estimates)
Nvidia FP8 (E4M3)
> Memory gets very large! Can we reduce this? L 1 4 3
slide credit: Tianjian Li

LLM Quantization

Original Quantized
32-bit float 2-bit signed int
-2 0 -1
1 1 2 Zero point Scale
- =1)X1.07=
> .) 7
-1 0 0

Reconstructed
32-bit float

-1.07

1.07

> Outlier weights can make it hard to find a good zero point/scale

slide credit: Tianjian Li

LLM Quantization

LLM) | nt8 () 8-bit Vector-wise Quantization

(1) Find vector-wise constants: C,, & C, (2) Quantize (4) Dequantize
X *(127/C,) = X
X Lae g A 127G =Xe outx (C,®C,) out
w - — B XZ W' _y
; E s (127G = W 127127 ne
1[a]a]o] (3) Int8 Matmul
F16 F16
t w X_ W = Out
8 8 132
Cx

16-bit Decomposition

(1) Decompose outliers

w
b1 7o)
[] Regular values X
[J outliers F16 f1e

(2) FP16 Matmul

X ~W_=Out
F16 F16 F16

|

—)@—> out
 oss

> Solution: combine 8-bit and 16-bit quantization, where most stuff

is 8-bit quantized

Dettmers et al. (2022)

LLM Quantization

Parameters 125M 13B 27B 6.7B 13B

32-bit Float 25.65 1591 1443 1330 1245
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 16.24 1476 1349 13.94
Int8 absmax row-wise 3093 17.08 1524 14.13 16.49
Int8 absmax vector-wise 35.84 16.82 1498 14.13 16.48
Int8 zeropoint vector-wise 2572 1594 1436 1338 13.47
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 1325 12.46
Absmax LLM.int8() (vector-wise + decomp) 2583 1593 1444 1324 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 15.92 1443 13.24 1245

> Validation perplexity on language modeling. Prior Int8 techniques
degrade, the decomposition maintains performance

Dettmers et al. (2022)

LLM Quantization

> Interestingly, the outlier features that require 16-bit quantization

emerge at large scale

100
80
60

40

20 [,

emergence of
4 outlier features

|
b
|
i
|
|
|
|
|
|
|
I
|

Percentage of layers or tokens affected

0 2 4 6 8 10 12
Parameters in billions

100

80

60

40

20

Percentage of layers or tokens affected

® % layers affected

% tokens affected /
emergence of
L

outlier features

|
o

35

30

25 20 15
C4 perplexity

Dettmers et al. (2022)

QLoRA: Memory-efficient training Where is this going?

Full Finetuning LoRA QLoRA

(Mo Adspters) Dettmers et al. (2023) > Better GPU programming: as GPU performance starts to saturate, we’ll
optaizer /\ probably see more algorithms tailored very specifically to the
Ezbn [i] [? 0 @«E D00 affordances of the hardware

| | pon:
et O o o O o o > Small models, either distilled or trained from scratch: as LLMs gets
1 t 1t U7 better, we can do with ~7B scale what used to be only doable with

Base [t 1 1] [R] o > ChatGPT (GPT-3.5)

16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow ==
> 4-bit “normal float”, takes advantage of the fact that NN weights
typically have a zero-centered normal distribution
> Paged optimizer state to avoid memory spikes (due to training
examples with long sequence length)

> Continued focus on faster inference: faster inference can be highly
impactful across all LLM applications

Takeaways

> Decoding optimizations: speculative decoding gives a fast way to exactly
sample from a smaller model. Also techniques like Flash Attention

> Model optimizations to make models smaller: pruning, distillation

> Model compression and quantization: standard compression
techniques, but adapted to work really well for GPUs

