## CS371N: Natural Language Processing

Lecture 6: NN Implementation

#### Greg Durrett



#### Announcements

- Assignment 1 due today
- Assignment 2 out today, due in two weeks
- Fairness response due Tuesday (submit on Canvas)
- Slip days: do not need to notify me



## Recap



#### Neural Networks

$$\mathbf{z} = g(Vf(\mathbf{x}) + \mathbf{b})$$
Nonlinear Warp Shift transformation space

$$y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}$$

Ignore shift / +b term for the rest of the course





#### Deep Neural Networks

$$\mathbf{z}_1 = g(V_1 f(\mathbf{x}))$$

$$\mathbf{z}_2 = g(V_2 \mathbf{z}_1)$$

. . .

$$y_{\text{pred}} = \operatorname{argmax}_{y} \mathbf{w}_{y}^{\top} \mathbf{z}_{n}$$



#### Classification Review

See Instapoll

#### Feedforward Networks



#### Vectorization and Softmax

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Single scalar probability

Three classes,"different weights"

$$\mathbf{w}_{1}^{\top}f(\mathbf{x})$$
 -1.1  $\overset{\overset{\leftarrow}{\mathsf{b}}}{\overset{\smile}{\mathsf{b}}}$  0.036  $\mathbf{w}_{2}^{\top}f(\mathbf{x})$  = 2.1  $\overset{\leftarrow}{\mathsf{b}}$  0.89 probs  $\mathbf{w}_{3}^{\top}f(\mathbf{x})$  -0.4 0.07

- Softmax operation = "exponentiate and normalize"
- We write this as:  $\operatorname{softmax}(Wf(\mathbf{x}))$



#### Logistic Regression as a Neural Net

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Single scalar probability

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

Weight vector per class;W is [num classes x num feats]

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Now one hidden layer



#### Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$d \text{ hidden units}$$

$$v \text{ probs}$$

$$d \times n \text{ matrix}$$

$$nonlinearity$$

$$num\_classes \times d$$

$$n \text{ features}$$

$$num\_classes \times d$$

$$n \text{ matrix}$$

# Backpropagation (with pictures)

#### Training Objective

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Consider the log likelihood of a single training example:

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x})$$

where i\* is the index of the gold label for an example

 Backpropagation is an algorithm for computing gradients of W and V (and in general any network parameters)



#### Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



n features

 Gradient w.r.t. W: looks like logistic regression, can be computed treating z as the features



#### Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$





#### Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



Combine backward gradients with forward-pass products

## Pytorch Basics

(code examples are on the course website: ffnn\_example.py)



## PyTorch

- Framework for defining computations that provides easy access to derivatives
- Module: defines a neural network (can use wrap other modules which implement predefined layers)
- If forward() uses crazy stuff, you have to write backward yourself

```
# Takes an example x and computes result
forward(x):
    ...
# Computes gradient after forward() is called
backward(): # produced automatically
    ...
```



#### Computation Graphs in Pytorch

• Define forward pass for  $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$ 

```
class FFNN(nn.Module):
    def init (self, input size, hidden size, out size):
        super(FFNN, self). init ()
        self.V = nn.Linear(input size, hidden size)
        self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
        self.W = nn.Linear(hidden size, out size)
        self.softmax = nn.Softmax(dim=0)
   def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x))))
                     (syntactic sugar for forward)
```



#### Input to Network

Whatever you define with torch.nn needs its input as some sort of tensor, whether it's integer word indices or real-valued vectors

```
def form_input(x) -> torch.Tensor:
    # Index words/embed words/etc.
    return torch.from_numpy(x).float()
```

- torch.Tensor is a different datastructure from a numpy array, but you can translate back and forth fairly easily
- Note that translating out of PyTorch will break backpropagation; don't do this inside your Module



#### Training and Optimization

```
one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))
                                      of the label
                                       (e.g., [0, 1, 0])
ffnn = FFNN(inp, hid, out)
optimizer = optim.Adam(ffnn.parameters(), lr=lr)
for epoch in range(0, num_epochs):
    for (input, gold label) in training data:
       ffnn.zero grad() # clear gradient variables
       probs = ffnn.forward(input)
       loss = torch.neg(torch.log(probs)).dot(gold label)
       loss.backward()
                                negative log-likelihood of correct answer
       optimizer.step()
                                (can also use NLLLoss)
```



## Initialization in Pytorch

```
class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
        nn.init.uniform(self.V.weight)
```

 Initializing to a nonzero value is critical. See optimization video on course website. (Pytorch does this by default so you don't actually have to include it.)



#### Training a Model

Define modules, etc.

Initialize weights and optimizer

For each epoch:

For each batch of data:

Zero out gradient

Compute loss on batch

Autograd to compute gradients and take step on optimizer

[Optional: check performance on dev set to identify overfitting]

Run on dev/test set

# Pytorch example

# Batching

## Batching

Modify the training loop to run over multiple examples at once

- Batch sizes from 1-100 often work well
- Can use the same network as before without modification

#### DANS



Credit: Stephen Roller

#### Word Embeddings

Currently we think of words as "one-hot" vectors

$$the = [1, 0, 0, 0, 0, 0, ...]$$
 $good = [0, 0, 0, 1, 0, 0, ...]$ 
 $great = [0, 0, 0, 0, 0, 1, ...]$ 

- good and great seem as dissimilar as good and the
- Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are weird and discrete



## Word Embeddings

Want a vector space where similar words have similar embeddings

great ≈ good

- Next lecture: come up with a way to produce these embeddings
- For each word, want
   "medium" dimensional vector
   (50-300 dims) representing it





#### Deep Averaging Networks

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input



lyyer et al. (2015)



#### Deep Averaging Networks

 Widely-held view: need to model syntactic structure to represent language

 Surprising that averaging can work as well as this sort of composition





# Sentiment Analysis

| No pretrained embeddings        | Model                                      | RT                        | SST<br>fine                                         | SST<br>bin                                   | IMDB                      | Time<br>(s)      |                           |
|---------------------------------|--------------------------------------------|---------------------------|-----------------------------------------------------|----------------------------------------------|---------------------------|------------------|---------------------------|
|                                 | DAN-ROOT DAN-RAND DAN                      | 77.3<br>80.3              | 46.9<br>45.4<br>47.7                                | 85.7<br>83.2<br>86.3                         | —<br>88.8<br>89.4         | 31<br>136<br>136 | lyyer et al. (2015)       |
| Bag-of-words                    | NBOW-RAND<br>NBOW<br>BiNB<br>NBSVM-bi      | 76.2<br>79.0<br>—<br>79.4 | 42.3<br>43.6<br>41.9                                | 81.4<br>83.6<br>83.1                         | 88.9<br>89.0<br>—<br>91.2 | 91<br>91<br>—    | Wang and                  |
| Tree-structured neural networks | RecNN* RecNTN* DRecNN TreeLSTM DCNN* PVEC* | 77.7                      | 43.2<br>45.7<br>49.8<br><b>50.6</b><br>48.5<br>48.7 | 82.4<br>85.4<br>86.6<br>86.9<br>86.9<br>87.8 | <br>89.4<br><b>92.6</b>   | 431<br>—<br>—    | Manning (2012) Kim (2014) |
|                                 | CNN-MC<br>WRRBM*                           | <b>81.1</b>               | 47.4<br>—                                           | <b>88.1</b>                                  | 89.2                      | 2,452            | KIIII (ZU14)              |



## Deep Averaging Networks

| Sentence                                                                | DAN      | DRecNN   | Ground Truth |
|-------------------------------------------------------------------------|----------|----------|--------------|
| who knows what exactly godard is on about in this film, but             | positive | positive | positive     |
| his words and images do n't have to add up to mesmerize you.            |          |          |              |
| it's so good that its relentless, polished wit can withstand            | negative | positive | positive     |
| not only inept school productions, but even oliver parker's             |          |          |              |
| movie adaptation too bad, but thanks to some lovely comedic moments and | negative | negative | positive     |
| several fine performances, it's not a total loss                        |          |          |              |
| this movie was not good                                                 | negative | negative | negative     |
| this movie was good                                                     | positive | positive | positive     |
| this movie was bad                                                      | negative | negative | negative     |
| the movie was not bad                                                   | negative | negative | positive     |

Will return to compositionality with syntax and LSTMs

lyyer et al. (2015)



## Word Embeddings in PyTorch

torch.nn.Embedding: maps vector of indices to matrix of word vectors

- $\triangleright$  *n* indices => *n* x *d* matrix of *d*-dimensional word embeddings
- b x n indices => b x n x d tensor of d-dimensional word embeddings



# Word Embeddings



# Word Embeddings