CS371N: Natural Language Processing

Lecture 6: NN Implementation

Announcements

- Assignment 1 due today
- Assignment 2 out today, due in two weeks
- ► Fairness response due Tuesday (submit on Canvas)
- ▶ Slip days: do not need to notify me

Recap

Neural Networks

$$\mathbf{z} = g(Vf(\mathbf{x}) + \mathbf{b})$$
 Nonlinear Warp transformation space Shift

$$y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}$$

Ignore shift / +b term for the rest of the course

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Deep Neural Networks

$$\mathbf{z}_1 = g(V_1 f(\mathbf{x}))$$

$$\mathbf{z}_2 = g(V_2 \mathbf{z}_1)$$
...
$$y_{\text{pred}} = \operatorname{argmax}_y \mathbf{w}_y^{\top} \mathbf{z}_n$$

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Classification Review

► See Instapoll

Feedforward Networks

Vectorization and Softmax

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

► Single scalar probability

Three classes, "different weights"
$$\mathbf{w}_{1}^{\top}f(\mathbf{x}) \quad -1.1 \quad \biguplus \quad 0.036 \\ \mathbf{w}_{2}^{\top}f(\mathbf{x}) = 2.1 \quad \longrightarrow \quad 0.89 \\ \mathbf{w}_{3}^{\top}f(\mathbf{x}) \quad -0.4 \quad 0.07$$

- ► Softmax operation = "exponentiate and normalize"
- We write this as: $\operatorname{softmax}(Wf(\mathbf{x}))$

Logistic Regression as a Neural Net

$$P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top} f(\mathbf{x}))}{\sum_{y' \in \mathcal{Y}} \exp(\mathbf{w}_{y'}^{\top} f(\mathbf{x}))}$$

Single scalar probability

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

Weight vector per class;W is [num classes x num feats]

$$P(\mathbf{y}|\mathbf{x}) = \text{softmax}(Wg(Vf(\mathbf{x})))$$

▶ Now one hidden layer

Backpropagation (with pictures)

Training Objective

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

► Consider the log likelihood of a single training example:

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x})$$

where i^* is the index of the gold label for an example

 Backpropagation is an algorithm for computing gradients of W and V (and in general any network parameters)

PyTorch

- Framework for defining computations that provides easy access to derivatives
- Module: defines a neural network (can use wrap other modules which implement predefined layers)
- If forward() uses crazy stuff, you have to write backward yourself

```
torch.nn.Module

# Takes an example x and computes result forward(x):
...

# Computes gradient after forward() is called backward(): # produced automatically
```


Computation Graphs in Pytorch

• Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wq(Vf(\mathbf{x})))$

class FFNN(nn.Module):
 def __init__(self, input_size, hidden_size, out_size):
 super(FFNN, self).__init__()
 self.V = nn.Linear(input_size, hidden_size)
 self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
 self.W = nn.Linear(hidden size, out size)

Input to Network

Whatever you define with torch.nn needs its input as some sort of tensor, whether it's integer word indices or real-valued vectors

```
def form_input(x) -> torch.Tensor:
    # Index words/embed words/etc.
    return torch.from_numpy(x).float()
```

- torch.Tensor is a different datastructure from a numpy array, but you can translate back and forth fairly easily
- Note that translating out of PyTorch will break backpropagation; don't do this inside your Module

Training and Optimization

```
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x}))) \quad \begin{array}{l} \text{one-hot vector} \\ \text{of the label} \\ \text{(e.g., [0, 1, 0])} \\ \text{optimizer = optim.Adam(ffnn.parameters(), lr=lr)} \\ \text{for epoch in range(0, num.pochs):} \\ \text{for (input, gold_label) in training_data:} \\ \text{ffnn.zero_grad() \# clear gradient variables} \\ \text{probs = ffnn.forward(input)} \\ \text{loss = torch.neg(torch.log(probs)).dot(gold_label)} \\ \text{loss.backward()} \\ \text{negative log-likelihood of correct answer optimizer.step()} \end{array}
```


Initialization in Pytorch

```
class FFNN(nn.Module):
    def __init__(self, inp, hid, out):
        super(FFNN, self).__init__()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
        nn.init.uniform(self.V.weight)
```

 Initializing to a nonzero value is critical. See optimization video on course website. (Pytorch does this by default so you don't actually have to include it.)

Training a Model

Define modules, etc.

Initialize weights and optimizer

For each epoch:

For each batch of data:

Zero out gradient

Compute loss on batch

Autograd to compute gradients and take step on optimizer

[Optional: check performance on dev set to identify overfitting]

Run on dev/test set

Pytorch example

Batching

Batching

Modify the training loop to run over multiple examples at once

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
    ...
    probs = ffnn.forward(input) # [batch_size, num_classes]
    loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))
    ...
```

- Batch sizes from 1-100 often work well
- Can use the same network as before without modification

DANs

Word Embeddings

Currently we think of words as "one-hot" vectors

```
the = [1, 0, 0, 0, 0, 0, ...]

good = [0, 0, 0, 1, 0, 0, ...]

great = [0, 0, 0, 0, 0, 1, ...]
```

- good and great seem as dissimilar as good and the
- Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are weird and discrete

Word Embeddings

Want a vector space where similar words have similar embeddings

 $great \approx good$

- Next lecture: come up with a way to produce these embeddings
- For each word, want "medium" dimensional vector (50-300 dims) representing it

Word Embeddings in PyTorch

► torch.nn.Embedding: maps vector of indices to matrix of word vectors

Predator is a masterpiece 1820 24 1 2047 ↓

- ► *n* indices => *n* x *d* matrix of *d*-dimensional word embeddings
- ► b x n indices => b x n x d tensor of d-dimensional word embeddings

Word Embeddings

Word Embeddings