CS371N: Natural Language Processing

Lecture 6: NN Implementation

Greg Durrett

Announcements

> Assignment 1 due today

> Assignment 2 out today, due in two weeks

> Fairness response due Tuesday (submit on Canvas)

> Slip days: do not need to notify me

Recap

transformation space Shift
- T
Ypred = argmax, w, z

> Ignore shift / +b term for the

Neural Networks

/ X
Nonlinear Warp

z=g(Vf(x)+ ],3)

rest of the course

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/




Deep Neural Networks

z1 = g(V1f(x))
Zy = g(VZZI) o =

~ 1

_ T
Ypred = argmax, w, z

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Classification Review

> See Instapoll

Feedforward Networks

> Three classes,

Vectorization and Softmax

exp(wy f(x))

P = (w7 ()

> Single scalar probability

max

w, f(x) -1 § 0.036
w, f(x)= 21 —> 0.89
w; f(x)

class
“different weights” probs

-0.4 0.07

> Softmax operation = “exponentiate and normalize”

> We write this as: softmax(W f(x))




Logistic Regression as a Neural Net Neural Networks for Classification

Pub = P(ylx) = softmax(W(V f(x)))

num_classes
. d hidden units probs
P(y|x) = softmax(W f(x)) > Weight vector per class;

W is [num classes x num feats]

0
B v HHeH w HemaE
P(y|x) = softmax(Wg(V f(x))) > Now one hidden layer a

9

| dxnmatrix nonlinearity ~ num_classes x d
n features (tanh, relu, ...) matrix

Training Objective
P(y[x) = softmax(Wg(V f(x)))
» Consider the log likelihood of a single training example:
Backpropagation L(x,i") = log P(y = i"[x)
(with pictures)

where i* is the index of the gold label for an example

> Backpropagation is an algorithm for computing gradients of W and V
(and in general any network parameters)




Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))

num_classes

] d hidden units probs
= "
B v e w I
g
Z

n features » Gradient w.r.t. W: looks like Ioglstlc

regression, can be computed treating z
as the features

Backpropagation: Picture

P(ylx) = softmax(Wg(V f(x)))

9
Z

err(z)

> Can forget everything after z, treat

it as the output and keep backpropping

Backpropagation: Picture

P(y|x) = softmax(Wg(V f(x)))
num_classes
d hidden units probs

)

n features

> Combine backward gradients with forward-pass products

Pytorch Basics

(code examples are on the course website: ffnn_example.py )




PyTorch Computation Graphs in Pytorch

> Framework for defining computations that provides easy access to » Define forward pass for P(y|x) = softmax(Wg(V f(x)))

derivatives
class FFNN(nn.Module):

* Module: defines a neural ('torch.nn.Module A def init (self, input size, hidden size, out size):
network (can use wrap # Takes an example x and computes result super (FFNN, self). init () _ _
other modules which forward(x): self.V = nn.Linear(input_size, hidden_size)
implement predefined N ' self.g = nn.Tanh() # or nn.ReLU(), sigmoid()...
layers) # Computes gradient after forward() is called self.w = nn.Llnear(hldden_s%ze, out_size)
self.softmax = nn.Softmax(dim=0)
» If forward() uses crazy
stuff, you have to write  \_ J def forward(self, x):
backward yourself return self.softmax(self.W(self.g(self.V(x))))
(syntactic sugar for forward)
Input to Network Training and Optimization
> Whatever you define with torch.nn needs its input as some sort of P(y|x) — SoftmaX(Wg(Vf(X))) g?fr_lzc:;;:ftor
tensor, whether it’s integer word indices or real-valued vectors (e.g, 0,1, 0])

ffnn = FFNN(inp, hid, out)

def form input(x) -> torch.Tensor: Lo
- optimizer = optim.Adam(ffnn.pgarameters(), lr=1r)

# Index words/embed words/etc. .
for epoch in range(0, num gZpochs):

for (input, gold label) in training data:
> torch.Tensor is a different datastructure from a numpy array, but you can ffnn.zero grad() # clear gradient variables

translate back and forth fairly easily probs = ffnn.forward(input)
loss = torch.neg(torch.log(probs)).dot(gold label)

return torch.from numpy(x).float()

> Note that translating out of PyTorch will break backpropagation; don’t
do this inside your Module loss.backward() negative log-likelihood of correct answer

optimizer.step() (can also use NLLLoss)




Initialization in Pytorch Training a Model

class FFNN(nn.Module): Define modules, etc.
def init (self, inp, hid, out):
super (FFNN, self). init ()
self.V = nn.Linear(inp, hid)
self.g nn.Tanh() For each batch of data:
self.W = nn.Linear(hid, out)
self.softmax = nn.Softmax(dim=0)

nn.init.uniform(self.V.weight) Compute loss on batch
Autograd to compute gradients and take step on optimizer

Initialize weights and optimizer
For each epoch:

Zero out gradient

> Initializing to a nonzero value is critical. See optimization video on course Optional: check perf d t to identif fitti
website. (Pytorch does this by default so you don’t actually have to [Optional: check performance on dev set to identify overfitting]

include it.) Run on dev/test set

Pytorch example Batching




Batching
> Modify the training loop to run over multiple examples at once

# input is [batch_size, num feats]
# gold_label is [batch_size, num classes]
def make update(input, gold label)

probs = ffnn.forward(input) # [batch_size, num classes]
loss = torch.sum(torch.neg(torch.log(probs)).dot(gold label))

» Batch sizes from 1-100 often work well

> Can use the same network as before without modification

DANSs

Always has been

Credit: Stephen Roller

Word Embeddings

> Currently we think of words as “one-hot” vectors
the=1[1,0,0,0,0,0, ...]
good=1[0,0,0,1,0,0, ..]
great=1[0,0,0,0,0,1,..]

» good and great seem as dissimilar as good and the

> Neural networks are built to learn sophisticated nonlinear functions
of continuous inputs; our inputs are weird and discrete

Word Embeddings

> Want a vector space where similar words have similar embeddings

great ~ good

great
> Next lecture: come up with a good
way to produce these enjoyable

embeddings

dog
> For each word, want

“medium” dimensional vector

(50-300 dims) representing it
bad

is




Deep Averaging Networks

> Deep Averaging Networks: feedforward neural network on average of
word embeddings from input

softmax

“hy +by)
1-av+by)
4
\ zf
LT T T | [ [T 1]
Predator is a masterpiece
a c2 c3 c4 lyyer et al. (2015)

Deep Averaging Networks

> Widely-held view: need to
model syntactic structure to
represent language

softmax

= 1w [5] +0)

softmax - [ } oy

softmax

> Surprising that averaging
can work as well as this sort
of composition

5n=fW [2] +1)

Predator is a masterpiece
(&1 C2 C3 Cq

lyyer et al. (2015)

Sentiment Analysis

Model RT SST SST IMDB Time
No pretrained fine  bin ®
i DAN-ROOT  — 469 857 — 31
embeddings ~~ DAN-RAND 773 454 832 888 136
[ DAN 803 477 863 894  136] lyyer et al. (2015)

NBOW-RAND 762 423 814 889 91
NBOW 79.0 436 836 89.0 91

Bag-of-words ;
BiNB — 419 8.1  — —  Wane and
[NBSVM-bi 794 — — 912  —| M g. 2012
RecNN* 777 432 824  — — anning ( )
RecNTN* — 457 854 — —
; DRecNN — 498 8.6 — 431
Tree-structured TreeLSTM — 506 89 — —
neural networks DCNN* — 485 869 894  —
PVEC* — 487 878 926  — )
[CNN-MC 811 474 881  —  2452] Kim (2014)
WRRBM* - —  — 892 —

Deep Averaging Networks

Sentence DAN DRecNN  Ground Truth
who knows what exactly godard is on about in this film,but  positive  positive positive
his words and images do @’0 have to add up to mesmerize
you.
it’s so [good) that its relentless, (polished wit can withstand —negative  positive positive

@6 only @inept) school productions, but even (oliver (parker’s

movie adaptation

too ©a@, but thanks to some (lovely comedic moments and negative negative positive
several fine performances, it’s @i6b a total loss

this movie was @6 (good negative  negative negative
this movie was (good positive  positive positive
this movie was 6ad [egative negative negative
the movie was oD 6ad [megative negative positive

> Will return to compositionality with syntax and LSTMs
lyyer et al. (2015)




Word Embeddings in PyTorch

> torch.nn.Embedding: maps vector of indices to matrix of word vectors

Predator is a masterpiece
1820 24 1 2047
|
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> nindices => n x d matrix of d-dimensional word embeddings

> b x nindices => b x n x d tensor of d-dimensional word embeddings

Word Embeddings

Word Embeddings




