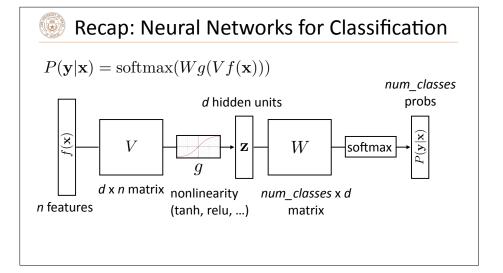
CS371N: Natural Language Processing

Lecture 7: Word Embeddings

Announcements

- ► Fairness response due today
- ► A2 due in 9 days

Recap



DANs

Word Embeddings

Currently we think of words as "one-hot" vectors

the =
$$v_{the}$$
 = [1, 0, 0, 0, 0, 0, ...]

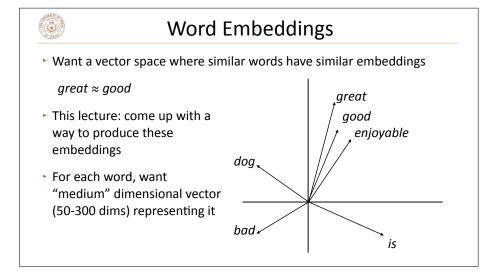
$$good = v_{good} = [0, 0, 0, 1, 0, 0, ...]$$

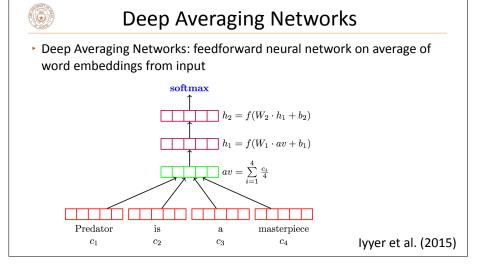
$$great = v_{great} = [0, 0, 0, 0, 0, 1, ...]$$

► good and great seem as dissimilar as good and the

the movie was great =
$$v_{the} + v_{movie} + v_{was} + v_{great}$$

 Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are discrete and high-dimensional





	Sentiment Analysis						
No pretrained embeddings	Model	RT	SST fine	SST bin	IMDB	Time (s)	
	DAN-ROOT DAN-RAND DAN	77.3 80.3	46.9 45.4 47.7	85.7 83.2 86.3	— 88.8 89.4	31 136 136	lyver et al. (2015)
Bag-of-words {	NBOW-RAND NBOW BiNB NBSVM-bi	76.2 79.0 — 79.4	42.3 43.6 41.9	81.4 83.6 83.1	88.9 89.0 — 91.2	91 91 —	Wang and
Tree-structured neural networks	RecNN* RecNTN* DRecNN TreeLSTM DCNN* PVEC*	77.7	43.2 45.7 49.8 50.6 48.5 48.7	82.4 85.4 86.6 86.9 86.9 87.8	 89.4 92.6	- 431 - -	Manning (2012)
	CNN-MC WRRBM*	81.1 —	47.4 —	88.1 —	— 89.2	2,452 —	Kim (2014)

Word Embeddings in PyTorch

► torch.nn.Embedding: maps vector of indices to matrix of word vectors

► *n* indices => *n* x *d* matrix of *d*-dimensional word embeddings

► b x n indices => b x n x d tensor of d-dimensional word embeddings

Word Embeddings

Word Embeddings

J.R. Firth, 1957: "You shall know a word by the company it keeps."

I watched the movie

I watched the film

I watched the baby

The movie inspired me

The baby inspired me

The film inspired me

There was film on the liquid