CS388: Natural Language Processing
Lecture 10: Evaluation Principles,
Dataset Artifacts
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Announcements

> Final project proposals due next Tuesday

> P3 released next week

Recap

> Pretraining (BERT):

> Train a big model to fill in masked-out words, then adapt it to other
tasks. Led to big gains in question answering and NLI performance.
BART/T5, GPT-3, etc. push this further and extend it to other tasks

> Decoding methods: nucleus sampling > greedy for open-ended tasks

> Two tasks we’ll focus on today: Question answering (QA)...
> “What was Marie Curie the first female recipient of?”
-> “The Nobel Prize” (find this span in a document)
> ...and NLI

> "But | thought you'd sworn off coffee."
contradicts "l thought that you vowed to drink more coffee."

Today
> Evaluation in NLP: benchmarks and generalization
» Spurious correlations / dataset artifacts

> Debiasing




Cross-Dataset Evaluation

Principles of Evaluation Suites

> Training and testing on i.i.d. data with big neural models often yields very
high performance

> “Solving” a task (getting human-level performance) may be useful, but
often can’t tell us about our models more broadly

> A parable of single-task evaluation: SWAG

SWAG: Weaknesses of single tasks

On stage, a woman takes a seat at the piano. She

a) sits on a bench as her sister plays with the doll.

b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

> Text-only data comes from video
captions in ActivityNet
> Adversarial filtering to produce the

negative multiple choice answers

> They said models get ~60% and humans
get ~85%, but BERT immediately solved
this dataset when it was released

Rowan Zellers et al., 2019

while convergence not reached do
o Split the dataset D randomly up into train-
ing and testing portions D" and D*®.
© Optimize a model f; on D",
for index i in D' do
o Identify easy indices:
A = {j € Ai: folz) > folai))}
e Replace N°**¥ easy indices j € A;"**Y
with adversarial indices k ¢ A; satisfying
Jo@iy) > fo(xi).
end for
end while
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Intuition

If you exclude easy examples, most of the
remaining examples are just slightly harder
than what you excluded

General drop-off in how
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Principles of Evaluation Suites
> Training and testing on i.i.d. data with big neural models often yields very
high performance

> “Solving” a task (getting human-level performance) may be useful, but
often can’t tell us about our models more broadly

> Designing a single, difficult task is really challenging!
> To assess big models, we need evaluation suites (benchmarks) like GLUE

> What makes a good evaluation suite of tasks?

Principles of Evaluation Suites

> Difficulty: even if some task can be solved by hand-engineering, it
should be hard to solve all N tasks

> Diverse: doing well on it should say something useful

> Good “yardstick”: should understand where human performance is
and what good performance on the task would mean

> GLUE was the first of these, but it wasn’t really diverse and it was
too easy. Next step: SuperGLUE

Alex Wang et al., 2019

SuperGLUE: Task Requirements

> Task substance: “Tasks should test a system’s ability to understand
and reason about texts in English.”

> Task difficulty: “Tasks should be beyond the scope of current state-of-
the-art systems, but solvable by most college-educated English
speakers.” (notably they excluded domain-specific tasks, which have
become more popular these days, e.g., the bar exam)

> Evaluatable: this is challenging to find!

> Public dataset, good license, etc.
Alex Wang et al., 2019




SuperGLUE: Performance

Model Avg BoolQT CB COPA MultiRC ReCoRD RTE WiC WSC AX, AX,

Metrics Acc. F1/Acc. Ace. F1,/EM F1I/EM Ace. Ace. Acc. MCC GPS Acc.
Most Frequent 47.1 62.3 21.7/48.4 500 61.1/03 33.4/325 503 500 651 0.0 100.0/50.0
CBoW 443 62.1 49.0/712 516 0.0/ 04 14.0/13.6 49.7 53.0 65.1 -04 100.0/50.0
BERT 69.0 774 75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6 69.5 643 230 97.8/51.7
BERT++ 71.5 79.0 84.7/90.4 73.8 70.0/24.1 72.0/71.3 79.0 69.5 643 380 99.4/51.4
Outside Best - 804 -/ - 844 704%24.5* 74.8/73.0 82.7 - - - -/ -

Human (est.) 89.8 89.0 95.8/98.9 100.0 81.8%/51.9* 91.7/91.3 93.6 80.0 100.0 77.0 99.3/99.7

> RoBERTa in 2019: 84.6
> DeBERTa in 2020: 90.3. Even SuperGLUE was solved quickly!

Alex Wang et al., 2019

SuperGLUE: Performance

As reported in BIGBench: SuperGLUE state of the art over time
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BIG-bench

> “Beyond the Imitation Game” — aim to learn more than what’s possible

from model vs. human performance

BIG-bench Task Sizes

> Particular emphasis on scaling

40

> Primarily for pre-trained models
without fine-tuning. Therefore,
not all tasks have large training
(or even test!) sets
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MMLU

» MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

When you drop a ball from rest it accelerates downward at 9.8 m/s2 If you instead throw it
downward assuming no air resistance its acceleration immediately after leaving your hand is
(A) 9.8 m/s?

(B) more than 9.8 m/s?

(C) less than 9.8 m/s?

(D) Cannot say unless the speed of throw is given.

1CS

Conceptual
Phys

XX X<&

In the complex z-plane, the set of points satisfying the equation z> = |z]* is a
(A) pair of points

(B) circle

(C) half-line

(D) line

College
Mathematics

XXX

Figure 4: Examples from the Conceptual Physics and College Mathematics STEM tasks.
Chung et al. (2022)

MMLU

> MMLU task (Hendrycks et al., 2020): 57 high school/college/professional exams:

- Random 25.0

- Average human rater 34.5
May 2020 GPT-3 5-shot 43.9
Mar. 2022 Chinchilla 5-shot 67.6
Apr. 2022 PaLM 5-shot 69.3
Flan-PaLM 5-shot 72.2

Oct: 2022 Flan-PaLM 5-shot: CoT +SC 752
- Average human expert 89.8

Chung et al. (2022)

MMLU

MMLU BBH
Model Finetuning Mixtures Tasks Norm. avg. Direct Col' Direct Col
540B  None (no finetuning) 0 49.1 713 629 491 637
CoT 9 526 (+3.5) 688 648 505 611
CoTl, Muffin 89 57.0 (+7.9) 718 66.7 567 64.0
CoT, Muffin, TO-SF 282 57.5 (+8.4) 729 682 573 640

CoT, Muffin, T0-SF, NIV2 1,836 58.5 (+9.4) 73.2 681 58.8 65.6

> Human performance estimates are ~90 on MMLU, ~80 on Big-Bench (BBH).
Even getting close on these tasks!

Chung et al. (2022)

Evaluation Under Distribution Shift




Model Performance

> If models can be fine-tuned on each of n tasks in an evaluation suite
and perform very well on the held-out test dataset, have we solved
everything we want?

> What can go wrong?

Generalization

> If a model does well on train but poorly on test data, it doesn’t generalize

> A model can do well on its test data and still fail to generalize out of
distribution — arguably an even more important notion

> Many notions of generalization. Example: POS tagging

Train data Test data Other domains, languages, ...

e T * )
Hard English
English, Wall English, Tweets
Street Journal also WSJ
English French
t/ fiction newswire
Easy (doable with multilingual models)

Generalization: QA

Train data Test data Other domains

Science
questions

SQuAD: factoid
questions with
answers on
Wikipedia

French
questions

Other types of reasoning, such as multi-hop questions

Who won the Nobel in Chemistry the year
Marie Curie won the Nobel in Physics?

Generalization

> Just doing well on a single test set is not that useful

> We want POS taggers, QA systems, and more that can generalize to
new settings so we can deploy them in practice

> Sometimes, you can get very good test performance but the model
generalizes very poorly. How does this happen?




Annotation Artifacts,
Reasoning Shortcuts: QA

Annotation Artifacts

> Some datasets might be easy because of how they’re constructed,

especially in QA and NLI

What becomes of Macbeth?
What does Macduff do to Macbeth?

What violent act does Macduff perform upon Macbeth?

> All questions have the same answer. But some are more easily guessable

Reminder: QA with BERT

Start/End Span
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Question Paragraph Devlin et al. (2019)

QA: Answer Type Heuristics

What degree did Martin Luther receive on October 19, 1512?

On October 19, 1512, Luther was awarded his doctorate of theology
and, on October 21, 1512, was received into the senate of the
theological faculty of the University of Wittenberg. He spent the rest of
his career in this position at the University of Wittenberg.

> What should the model be doing? Corresponding Martin Luther with

Luther, matching October 19, 1512 between question and passage




QA: Answer Type Heuristics
What degree did Martin Luther receive?
What degree ___?
On October 19, 1512, Luther was awarded his doctorate of theology
and, on October 21, 1512, was received into the senate of the

theological faculty of the University of Wittenberg. He spent the rest of
his career in this position at the University of Wittenberg.

> Only one possible degree here! Model only needs to see “what degree”
and will not learn to use the rest of the context!

QA: Answer Type Heuristics
> Question type is powerful indicator. Only a couple of locations in this context!

Where ?

On October 19, 1512, Luther was awarded his doctorate of theology
and, on October 21, 1512, was received into the senate of the
theological faculty of the University of Wittenberg. He spent the rest of
his career in this position at the University of Wittenberg.

Who ?

When ?

QA: Answer Type Heuristics

> Question type is powerful indicator. Only a couple of locations in this context!
Where ?  Who ? When ?

On October 19, 1512, Luther was awarded his doctorate of theology
and, on October 21, 1512, was received into the senate of the
theological faculty of the University of Wittenberg. He spent the rest of
his career in this position at the University of Wittenberg.

> What will happen if we train on this data?
> Will loss decrease?

> How will the model learn to “behave”?

Annotation Artifacts,
Reasoning Shortcuts: NLI




Reminder: NLI with BERT

entailed/neutral/contradiction
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premise hypothesis Devlin et al. (2019)

NLI: Hypothesis-only Baselines

Premise: A woman on a deck is selling bamboo sticks.
Label?

Hypothesis: A man is selling bamboo sticks
Hypothesis: A man is juggling flaming chainsaws
Hypothesis: Eighteen flying monkeys are in outer space

> Not all of these things have the same likelihood of being true a priori

> What might the model learn to do in this case?

NLI: Hypothesis-only Baselines

Premise A woman selling bamboo sticks talking to two men on a loading dock.
Entailment There are at least three people on a loading dock.
Neutral A woman is selling bamboo sticks to help provide for her family.

Contradiction A woman is not taking money for any of her sticks.

> What's different about this neutral sentence?

> To create neutral sentences: annotators add information
» What'’s different about this contradictory sentence?

> To create contradictions: annotators add negation

> These are not broadly representative of what can happen in other settings.
There is no “natural” distribution of NLI, but this is still very restrictive

NLI: Hypothesis-only Baselines

Premise A woman selling bamboo sticks talking to two men on a loading dock.
Entailment There are at least three people on a loading dock.
Neutral A woman is selling bamboo sticks to help provide for her family.

Contradiction A woman is not taking money for any of her sticks.

> Models can detect new information or negation easily

> Models can do very well without looking at the premise

Hyp-only model Majority class
Performance of models that SNLI 69.17 33.82 +35.35
only look at the hypothesis: MNLI-1 55.52 3545 +20.07
~70% on 3-class SNLI dataset MNLI-2 55.18 3522 +19.96

Gururangan et al. (2018); Poliak et al. (2018)




NLI: Heuristics (HANS)

Heuristic Definition Example

Lexical overlap Assume that a premise entails all hypothe- The doctor was paid by the actor.

ses constructed from words in the premise WN—(? The doctor paid the actor.

Subsequence Assume that a premise entails all of its The doctor near the actor danced.
contiguous subsequences. ———— The actor danced.
WRONG
Constituent Assume that a premise entails all complete If the artist slept, the actor ran.

——— The artist slept.

subtrees in its parse tree.
WRONG

> Word overlap supersedes actual reasoning in these cases

> They create a test set (HANS) consisting of cases where heuristics

like word overlap are misleading. Very low performance
McCoy et al. (2019)

Evidence of Spurious Correlations: Contrast Sets

> How do we control for annotation artifacts? Things like “premises
and hypotheses overlap too much” aren’t easy to see!

> For any particular effect like lexical overlap, we could try to annotate
data that “breaks” that effect

> Issue: breaking one correlation may just result in another one
surfacing. How do we “break” them all at the same time?

> Solution: construct new examples through minimal edits that
change the label.

Gardner et al. (2020)

Evidence of Spurious Correlations: Contrast Sets

Hardly one to be faulted for his ambition or his vi- Hardly one to be faulted for his ambition or his
sion, it is genuinely unexpected, then, to see all vision, here we see all Park’s effort come to
Park’s effort add up to so very little. ... The premise  fruition. ...The premise is perfect, gags are
is promising, gags are copious and offbeat humour hilarious and offbeat humour abounds, and it
abounds but it all fails miserably to create any mean- creates a deep connection with the audience.
ingful connection with the audience. (Label: Positive)

(Label: Negative)

> By minimally editing an example, we control for pretty much all of
the possible shortcuts that apply to the original.

> E.g., [summary starts with “Hardly” -> negative] is a pattern that
could not hold anymore

Gardner et al. (2020)

Evidence of Spurious Correlations: Contrast Sets

Dataset #Examples # Sets | Model Original Test Contrast

NLVR2 994 479 | LXMERT 76.4 61.1 (-15.3)
IMDb 488 488 | BERT 938 842 (-9.6)
MATRES 401 239 | CogCompTime2.0 732 633 (9.9
UD English 150 150 | Biaffine + ELMo 647 46.0 (-18.7)
PERSPECTRUM 217 217 | RoBERTa 90.3 85.7 (—4.6)
DROP 947 623 | MTMSN 799 542 (=257

Gardner et al. (2020)




Solutions

Broad Solutions

> Most solutions involve changing what data is trained on

> Subset of data

» Soft subset (i.e., reweight the existing examples)

» Superset: add adversarially-constructed data, contrast sets, etc.
> For subsets: what do we train on?

> Don’t train on stuff that allows you to cheat

> Train on examples that teach the real task rather than shortcuts

>

>

>

Dataset Cartography

What happens with each particular example during training?

Spurious correlations are easy to learn: a model should learn these
early and always get them right

Imagine a very challenging example

> Model prediction may change a lot as it learns this example, may be
variable in its predictions

Imagine a mislabeled example

> Probably just always wrong unless it gets overfit

Swayamdipta et al. (2021)

Data Maps

> Confidence: mean probability
of correct label

> Variability: standard deviation
in probability of the correct
label

confidence
<]
&
f=
=
S
=
&
<> e+ mox e

> Ambiguous examples: 02
possible learnable (model
knows it sometimes but not
other times), but hard!

hard-to-learn

0.0

0.0 0.1 0.2 0.3 0.4 0.5
variability

Swayamdipta et al

correct.
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Data Maps

> What to do with them?

> Training on hard-to-learn or 08
ambiguous examples leads to
better performance out-of-
domain

correct.
0.0
0.2
0.3
0.5
0.7
0.8
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Swayamdipta et al. (2021)

Debiasing
> Other ways to identify easy examples other than data maps

> Train some kind of a weak model and discount examples that it fits easily

one-hot label vector log probability

/ of each label

. I
L(04) = —(1— pz(,z’c))y(z) - log pq

/

probability under a copy of the model trained
for a few epochs on a small subset of data (bad model)

Utama et al. (2020)

Debiasing

MNLI (Acc.)
dev HANS A
BERT-base 84.5 61.5 -

Reweighting wownbias 83.5¢ 69.2F  +7.7
Reweighting geif.debias 81.4 68.6 +7.1
Reweighting @ seif-debias 82.3 69.7  +8.2

Method

> On the challenging HANS test set for NLI, this debiasing improves
performance substantially

> In-domain MNLI performance goes down

Utama et al. (2020)

Debiasing

> Other work has explored similar approaches using a known bias model

p; = softmaz(log(p;) + log(b;))

probabilities from learned bias model — like the weak model from
Utama et al. (prev. slides), but you define its structure

> Ensembles the weak model with the model you actually learn.

> Your actual model learns the residuals of the weak model:
the difference between the weak model's output distribution and
the target distribution.

> This lets it avoid learning the weak model's biases!
He et al. (2019), Clark et al. (2019)




Takeaways

> Strong neural models trained on “tough” datasets may fail to generalize
because they learn annotation artifacts

> By reweighting data or changing the training paradigm, you can learn a
model that generalizes better

> Most gains will show up out-of-domain. Very hard to get substantial

improvements on the same dataset, unless you consider small subsets
of examples (e.g., the toughest 1% of examples by some measure)

> As more “generalist” LLMs are learned, this problem goes away...but
there’s always a tradeoff when you want to fine-tune them for certain
tasks

> Next time: further understanding in-context learning




