
CS388:	Natural	Language	Processing

Greg	Durret

Lecture	21:	
Efficiency	and	
LLMs

Announcements

‣ Check-ins	due	today,	will	be	graded	as	promptly	as	we	can

‣ Final	presentations	start	in	2.5	weeks,	reports	due	May	3

This	Lecture

‣ Decoding	optimizations:	exact	decoding,	but	faster
‣ Speculative	decoding
‣ Medusa	heads

‣ Model	pruning

‣ Model	compression

‣ Pruning	LLMs

‣ Distilling	LLMs

‣ Flash	attention

Decoding	Optimizations

Decoding	Basics

<s>							I							saw				the				dog

I							saw				the				dog		running

running

to

to

the

Prompt	(prefix	of	p	tokens) Decoded	tokens	(k)

L	transformer	
layers

Operations	for	one	decoder	pass:

Operations	for	k	decoder	passes:
Transformer	layers	(non-
parallelizable	ops):

O(pL)

O(pk2L) O(kL)

Speculative	Decoding

<s>							I							saw				the				dog

I							saw				the				dog		running

running					to							the				house

‣ Key	idea	a	forward	pass	for	several	tokens	at	a	time	is	O(L)	serial	
steps,	since	the	tokens	can	be	computed	in	parallel

‣ Can	we	predict	many	tokens	with	a	weak	model	and	then	“check”	
them	with	a	single	forward	pass?

				to									the			house		quickly

Prompt	(prefix	of	p	tokens) Decoded	tokens	(k)

Speculative	Decoding

<s>							I							saw				the				dog

I							saw				the				dog		running

running

Distribution	over	vocabulary

‣ When	sampling,	we	need	the	whole	distribution

‣ When	doing	greedy	decoding,	we	only	need	to	know	what	token	was	
the	max

Prompt	(prefix	of	p	tokens) Decoded	tokens	(k)

Speculative	Decoding

<s>							I							saw				the				dog

I							saw				the				dog		running

running					to							the				house

‣We	can	use	a	small,	cheap	model	to	do	inference,	then	check	that	
“to”,	“the”,	“house”,	“quickly”	are	really	the	best	tokens	from	a	
bigger	model

				to									the			house		quickly

Prompt	(prefix	of	p	tokens) Decoded	tokens	(k)

Leviathan	et	al.	(2023)

Speculative	Decoding:	Flow

<s>							I							saw				the				dog

I							saw				the				dog		running

running					to							the				house

‣ Produce	decoded	tokens	one	at	a	time	from	a	fast	draft	model…

				to								the			house		quickly

DRAFT DRAFT DRAFT DRAFT DRAFT

<s>							I							saw				the				dog

I							saw				the				dog		running

running					to							the				house

				to								the			house		quickly

MAIN MAIN

‣ Confirm	that	the	tokens	are	the	max	tokens	from	the	slower	main	model.	
Any	“wrong”	token	invalidates	the	rest	of	the	sequence

Speculative	Decoding

‣ Can	also	adjust	this	to	use	sampling.	Treat	this	as	a	proposal	distribution	
q(x)	and	may	need	to	reject	+	resample	(rejection	sampling)

Leviathan	et	al.	(2023)

Speculative	Decoding

‣ Find	the	first	index	that	was	
rejected	by	the	sampling	
procedure,	then	resample	from	
there

Leviathan	et	al.	(2023)

Medusa	Heads

https://www.together.ai/blog/medusa

‣ The	“draft	model”	consists	
of	multiple	prediction	
heads	trained	to	predict	the		
next	k	tokens

Medusa	Heads

https://www.together.ai/blog/medusa

‣ Evaluate	multiple	candidates	
at	once	using	a	customized	
attention	layer.	In	this	image:	
2	x	3	candidates

Medusa	Heads

https://www.together.ai/blog/medusa

‣ Speedup	with	no	loss	in	
accuracy!

Other	Decoding	Improvements

‣ Batching	parallelism:	improve	throughput	by	decoding	many	examples	in	
parallel.	(Does	not	help	with	latency,	and	it’s	a	little	bit	harder	to	do	in	
production	if	requests	are	coming	in	asynchronously)

‣ Low-level	hardware	optimizations?

‣ Most	other	approaches	to	speeding	up	require	changing	the	model	
(making	a	faster	Transformer)	or	making	it	smaller	(distillation,	
pruning;	discussed	next)

‣ Easy	things	like	caching	(KV	cache:	keys	+	values	for	context	tokens	
are	cached	across	multiple	tokens)

Flash	Attention

‣ Does	extra	computation	during	attention,	but	avoids	expensive	
reads/writes	to	GBU	“high-bandwidth	memory.”	Recomputation	is	all	
in	SRAM	and	is	very	fast

‣ Essentially:	store	a	running	sum	for	the	softmax,	compute	values	as	needed

Flash	Attention

[dividing	stuff	into	blocks]

[more	computation,	
writes	to	HBM]

Flash	Attention

‣ Gives	a	speedup	for	free	—	with	no	cost	in	accuracy	(modulo	
numeric	instability)

‣ Outperforms	the	speedup	from	many	other	approximate	
Transformer	methods,	which	perform	substantially	worse

Model	Compression

Approaches	to	Compression
‣ Pruning:	can	we	reduce	the	number	of	neurons	in	the	model?

‣ Basic	idea:	remove	low-magnitude	weights

‣ Issue:	sparse	matrices	are	not	fast,	matrix	multiplication	is	very	
fast	on	GPUs	so	you	don’t	save	any	time!

Approaches	to	Compression
‣ Pruning:	can	we	reduce	the	number	of	neurons	in	the	model?

‣ Basic	idea:	remove	low-magnitude	weights

‣ Instead,	we	want	some	kind	of	structured	pruning.	What	does	this	look	
like?

‣ Still	a	challenge:	if	different	layers	have	different	sizes,	your	GPU	
utilization	may	go	down

Sheared	Llama

Mengzhou	Xia	et	al.	(2023)

‣ Idea	1:	
targeted	
structured	
pruning

‣ Parameterization	and	
regularization	encourage	
sparsity,	even	though	the	
z’s	are	continuous

Sheared	Llama

Mengzhou	Xia	et	al.	(2023)

‣ Idea	2:	dynamic	batch	loading.	Update	the	weights	controlling	the	
mix	of	data	you	use	during	pre-training	(sample	more	from	domains	
of	data	with	high	loss)

‣ Train	for	a	while	with	the	z’s,	then	prune	the	network.	Then	enter	
stage	2:	continued	pre-training	on	new	data

Sheared	Llama

Mengzhou	Xia	et	al.	(2023)

‣ (Slightly)	better	than	models	that	were	“organically”	trained	at	these	
larger	scales

Approaches	to	Compression
‣ Pruning:	can	we	reduce	the	number	of	neurons	in	the	model?

‣ Basic	idea:	remove	low-magnitude	weights

‣ Instead,	we	want	some	kind	of	structured	pruning.	What	does	this	look	
like?

‣ Knowledge	distillation

‣ Classic	approach	from	Hinton	et	al.:	train	a	student	model	to	match	
distribution	from	teacher

DistilBERT
figure	credit:	Tianjian	Li

Suppose	we	have	a	classification	model	with	output	Pteacher(y	|	x)

Minimize	KL(Pteacher	||	Pstudent)	to	bring	student	dist	close	to	teacher

Note	that	this	is	not	using	labels	—	it	uses	the	teacher	to	“pseudo-label”	
data,	and	we	label	an	entire	distribution,	not	just	a	top-one	label	

DistilBERT

Sanh	et	al.	(2019)

‣ Use	a	teacher	model	as	a	large	neural	network,	such	as	BERT

‣ Make	a	small	student	model	that	is	half	the	layers	of	BERT.	Initialize	with	
every	other	layer	from	the	teacher

figure	credit:	Tianjian	Li

DistilBERT

Sanh	et	al.	(2019)

Other	Distillation

Cheng-Yu	Hsieh	et	al.	(2023)

‣ How	to	distill	models	for	complex	reasoning	settings?	Still	an	open	
problem!

Parameter-Efficient	Tuning

Parameter-Efficient	Tuning

‣ Rather	than	train	all	model	parameters	at	once,	can	we	get	away	with	
just	training	a	small	number	of	them?

‣ What	are	the	advantages	of	this?

‣ Not	an	advantage:	faster	(it’s	not)

‣ Typical	advantages:	lower	memory,	easier	to	serve	many	models	for	
use	cases	like	personalization	or	multitasking

BitFit

Zaken	et	al.	(2022)

‣ Tune	only	the	bias	terms	of	
the	Transformer	architecture,	
don’t	fine-tune	the	weights

‣ How	many	parameters	do	you	
think	this	is?

BitFit

‣ Degraded	performance,	but	only	train	<0.1%	of	the	parameters	of	
the	full	model!

Zaken	et	al.	(2022)

…

LoRA

Hu	et	al.	(2021)

‣ Alternative:	learn	weight	matrices	as	(W	+	BA),	
where	BA	is	a	product	of	two	low-rank	matrices.

‣ Unlike	some	other	methods,	LoRA	can	be	
“compiled	down”	into	the	model	(just	add	
BA	into	W)

‣ If	we	have	a	d	x	d	matrix	and	we	use	a	rank	
reduction	of	size	r,	what	is	the	parameter	
reduction	from	LoRA?

‣ Allows	adding	low-rank	matrix	on	top	of	
existing	high-rank	model

LoRA

Hu	et	al.	(2021)

‣ LoRA	is	much	better	than	BitFit,	even	better	than	vanilla	fine-tuning	
on	GLUE!

LLM	Quantization

‣ A	significant	fraction	of	LLM	training	is	just	storing	the	weights

‣ Normal	floating-point	precision:	4	bytes	per	weight,	gets	large	for	
10B+	parameter	models!

‣ How	much	is	needed	for	fine-tuning?

‣ The	Adam	optimizer	has	to	store	at	least	2	additional	values	for	
each	parameter	(first-	and	second-moment	estimates)

‣ Memory	gets	very	large!	Can	we	reduce	this?

LLM	Quantization

slide	credit:	Tianjian	Li

LLM	Quantization

slide	credit:	Tianjian	Li

‣ Outlier	weights	can	make	it	hard	to	find	a	good	zero	point/scale

LLM	Quantization

Dettmers	et	al.	(2022)

‣ Solution:	combine	8-bit	and	16-bit	quantization,	where	most	stuff	
is	8-bit	quantized

LLM	Quantization

Dettmers	et	al.	(2022)

‣ Validation	perplexity	on	language	modeling.	Prior	Int8	techniques	
degrade,	the	decomposition	maintains	performance

LLM	Quantization

Dettmers	et	al.	(2022)

‣ Interestingly,	the	outlier	features	that	require	16-bit	quantization	
emerge	at	large	scale

QLoRA:	Memory-efficient	training

‣ 4-bit	“normal	float”,	takes	advantage	of	the	fact	that	NN	weights	
typically	have	a	zero-centered	normal	distribution

‣ Paged	optimizer	state	to	avoid	memory	spikes	(due	to	training	
examples	with	long	sequence	length)

Dettmers	et	al.	(2023)

Where	is	this	going?

‣ Better	GPU	programming:	as	GPU	performance	starts	to	saturate,	we’ll	
probably	see	more	algorithms	tailored	very	specifically	to	the	
affordances	of	the	hardware

‣ Small	models,	either	distilled	or	trained	from	scratch:	as	LLMs	gets	
better,	we	can	do	with	~7B	scale	what	used	to	be	only	doable	with	
ChatGPT	(GPT-3.5)

‣ Continued	focus	on	faster	inference:	faster	inference	can	be	highly	
impactful	across	all	LLM	applications

Takeaways
‣ Decoding	optimizations:	speculative	decoding	gives	a	fast	way	to	exactly	
sample	from	a	smaller	model.	Also	techniques	like	Flash	Attention

‣ Model	optimizations	to	make	models	smaller:	pruning,	distillation

‣ Model	compression	and	quantization:	standard	compression	
techniques,	but	adapted	to	work	really	well	for	GPUs

