CS388: Natural Language Processing

Lecture 21:
Efficiency and
LLMs

Greg Durrett
YTEXAS

Announcements

> Check-ins due today, will be graded as promptly as we can

> Final presentations start in 2.5 weeks, reports due May 3

This Lecture

> Decoding optimizations: exact decoding, but faster
> Speculative decoding

> Medusa heads

> Flash attention

> Model pruning
> Pruning LLMs
> Distilling LLMs

> Model compression

Decoding Optimizations

Decoding Basics

| saw the dog runnmg to

t t t
[][][Il
| i i i I:::I E L transformer
i i i layers
[|| || I[

<s> | saw the dog runnmg to

Prompt (prefix of p tokens) Decoded tokens (k)

Operations for one decoder pass: O(pL) Transformer layers (non-

Operations for k decoder passes: O(pk2L) parallelizable ops): O(kL)

Speculative Decoding

I saw the dog running to the house quickly
t t t 1 t t t t t
[][][I[Il] [| | [| [|
| t t t 1 t | | i t t i
i t t t t i t i t
[I Il]! Il | | | [| |
<s> | saw the dog running to the house

Prompt (prefix of p tokens) Decoded tokens (k)
» Key idea a forward pass for several tokens at a time is O(L) serial
steps, since the tokens can be computed in parallel
> Can we predict many tokens with a weak model and then “check”
them with a single forward pass?

Speculative Decoding

. Distribution over vocabulary
I saw the dog running

[
t t t t t t
[11][Il |] []
| t t t t t | I:I;I
i i i i i
[I I I[I[| [|
<s> | saw the dog running

Prompt (prefix of p tokens) Decoded tokens (k)

> When sampling, we need the whole distribution

> When doing greedy decoding, we only need to know what token was
the max

Speculative Decoding

| saw the dog running to the house quickly
t t | | t t t t
[][][I[|] [[]]]
| t t t 1 t | | t t t i
i t i t t i t t i
[I I]! Il | | | | |
<s> | saw the dog running to the house

Prompt (prefix of p tokens) Decoded tokens (k)

> We can use a small, cheap model to do inference, then check that
“to”, “the”, “house”, “quickly” are really the best tokens from a

bigger model Leviathan et al. (2023)

Speculative Decoding: Flow

| saw the dog running to the house quickly

t t t 1 t t
| DRAFT | | DRAFT| | DRAFT| | DRAFT| | DRAFT|
<s> | saw the dog running to the house

> Produce decoded tokens one at a time from a fast draft model...

| saw the dog running to the house quickly

t t t f t t t t t
MAIN MAIN
<s> | saw the dog running to the house

» Confirm that the tokens are the max tokens from the slower main model.

Any “wrong” token invalidates the rest of the sequence

Speculative Decoding

[START] japan ' s benchmark bend n Leviathan et al. (2023)

[START] jaﬂ benchmark Ein'Si' 22 55
[START] japan | 5 benchmark nikket 225 index rose 22 ;8
ISTART] japan | s benchmark nikkei 225 index rose 226 . 69 ; points
[START] jaﬂ benchmark nikkei 225 iﬂ(rose 2,_<29 . 69 pmi.._nts. . or

b — Ho—

1

In I IV I In

I-1-I-1=1-H-

Ik I®

[START] japan benchmark nikkei 225 index rose 226 . 69 points , or

H—t— Ho—

. 5 percent , to 10 , 9859

’ ’
" — A A e

> Can also adjust this to use sampling. Treat this as a proposal distribution
g(x) and may need to reject + resample (rejection sampling)

Speculative Decoding

Inputs: M, My, prefiz.

> Find the first index that was > Sample y guesses z1,... , from M, autoregressively.
.) fori=1to~ydo
rejected by the sampling (@) « My(prefiz + [z1,. . ., i1])
procedure, then resample from @i ~ (%)
end for
there > Run M, in parallel.

P1(2); - -y Py11(2) =

M, (prefiz),..., My(prefiz + [z1,...,z,])
> Determine the number of accepted guesses n.
ry ~U(0,1),...,r, ~U(0,1)
nemin{i—1[1<i <y, > ZEU{y})
> Adjust the distribution from M,, if needed.

P (z) ¢+ pnta(z)

if n < v then

P'(z) < norm(maz(0,pn+1(2) — gnt1(2)))
end if
> Return one token from M,,, and n tokens from M.
t~p'(z)

Leviathan et al. (2023) return prefiz + a1, ..., @n 8]

Medusa Heads

> The “draft model” consists T

#% Original Model 1 Top-k Predictions

of multiple prediction W {E
& Medusa Heads
1

heads trained to predict the
next k tokens o[eausa eas

Transformer
Layers Medusa Head 2

) Medusa Head 3 }[not, difficult, a }
Jn(

r[is, ', the }

L _J

r{ difficult, is, ' }

*Input "~ Candidates / Single step prediction
What will happen if It is difficult not Itis difficult
Medusa meets a llama? It' difficult a X

Itis'not X ...

https://www.together.ai/blog/medusa

Medusa Heads
® Mo 0 olelojolele

Head 1

Query

v

v

=

Medusa Heads

Speedup on different model sizes

Lo7x m w/o Medusa
mmm w/ Medusa

> Speedup with no loss in
accuracy!

©
S

1.92x

Head 2 T
S 60
> Evaluate multiple candidates) v v ﬁ
at once using a customized ‘ v v gw L
attention layer. In this image: (ve) v v e :
2 x 3 candidates C v v 20 .
‘ : J J ° 13B 33B
Tree Mask . v v Model Size
https://www.together.ai/blog/medusa \ ' https://www.together.ai/blog/medusa
: Other Decoding Improvements : Flash Attention
> Most other approaches to speeding up require changing the model Attention on GPT-2

(making a faster Transformer) or making it smaller (distillation,
pruning; discussed next)

> Batching parallelism: improve throughput by decoding many examples in
parallel. (Does not help with latency, and it’s a little bit harder to do in
production if requests are coming in asynchronously)

> Low-level hardware optimizations?

> Easy things like caching (KV cache: keys + values for context tokens
are cached across multiple tokens)

IMatmul

[l

—_—
K:dxN
Copy Block to SRAM
Q:Nxd — _ Outerloop _ yinxd
B
!

\
Compute Block
1 onsraM

i\ SRAM: 19 TB/s (20 MB)
SRAM

B HEM: 1.5 TB/s (40 GB)
HBM

Dropout

o

Softmax

Time (ms)

Fused

Mask Kernel
—

Inner Loop
doo81n0

ETLIEIN BT DRAM: 12.8 GB/s
(CPU DRAM) (>17T8B)

w

—

——
doojssuu; &
2 :
2
—_—

] Matmul
PyTorch FlashAttention

Memory Hierarchy with Output to HEM

Bandwidth & Memory Size SmQKIV: Nxd

Inner Loop
FlashAttention

> Does extra computation during attention, but avoids expensive

reads/writes to GBU “high-bandwidth memory.” Recomputation is all
in SRAM and is very fast
> Essentially: store a running sum for the softmax, compute values as needed

Flash Attention

Algorithm 0 Standard Attention Implementation

Require: Matrices Q, K,V € RV*4 in HBM.
1: Load Q, K by blocks from HBM, compute S = QK", write S to HBM.
2: Read S from HBM, compute P = softmax(S), write P to HBM.
3: Load P and V by blocks from HBM, compute O = PV, write O to HBM.
4: Return O.

Algorithm 1 FLASHATTENTION
Require: Matrices Q,K,V € R¥V*? in HBM, on-chip SRAM of size M.
[dividing stuff into blocks]

5: for 1 < j <T. do
6: Load K;,V; from HBM to on-chip SRAM.

7 for 1 <i<T, do .
8: Load Q;,0;,¢;, m; from HBM to on-chip SRAM. [more computation,
9 On chip, compute S;; = QiK]T. € RB>Be, writes to HBM]

Flash Attention

Models ListOps Text Retrieval Image Pathfinder | Avg | Speedup

Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 59.8 2.4%

Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8x

Linformer [84] 35.6 55.9 7.7 37.8 67.6 54.9 2.5X%

Linear Attention [50] 38.8 63.2 80.7 42.6 72.5 59.6 2.3%

Performer [12] 36.8 63.6 82.2 42.1 69.9 58.9 1.8%

Local Attention [80] 36.1 60.2 76.7 40.6 66.6 56.0 1.7x

Reformer [51] 36.5 63.8 78.5 39.6 69.4 57.6 1.3x

Smyrf [19] 36.1 64.1 79.0 39.6 70.5 57.9 1.7x

> Gives a speedup for free — with no cost in accuracy (modulo

numeric instability)

> Outperforms the speedup from many other approximate
Transformer methods, which perform substantially worse

Model Compression

Approaches to Compression

> Pruning: can we reduce the number of neurons in the model?

> Basic idea: remove low-magnitude weights

> Issue: sparse matrices are not fast, matrix multiplication is very
fast on GPUs so you don’t save any time!

Approaches to Compression
> Pruning: can we reduce the number of neurons in the model?
. Basicidea: i ol

> Instead, we want some kind of structured pruning. What does this look
like?

> Still a challenge: if different layers have different sizes, your GPU
utilization may go down

Sheared Llama

> ldea 1:
targeted
structured
pruning

Zhlddcn d

> Parameterization and
regularization encourage
sparsity, even though the
Z’s are continuous

head inter layer
z z ¥4
y \ N

Source Model

Ls:3,d5:67H5:4,m$:8

Structured
Pruning

—_—

Target Model
Lr=2dr=3,Hr=2my=4

Mengzhou Xia et al. (2023)

Sheared Llama

> Train for a while with the z’s, then prune the network. Then enter
stage 2: continued pre-training on new data

> Idea 2: dynamic batch loading. Update the weights controlling the
mix of data you use during pre-training (sample more from domains
of data with high loss)

Mengzhou Xia et al. (2023)

Sheared Llama

Continued LM World Knowledge

Model (#tokens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA2-7B enf 30.7 82.1 28.8 739 46.6 64.6
OPT-1.3B (300) 26.9 57.5 58.0 6.9 24.7 48.2
Pythia-1.4B Goos)t 273 57.4 61.6 6.2 25.7 48.9
Sheared-LLaMA-1.3B (s08) 26.9 64.0 61.0 9.6 25.7 51.0
OPT-2.7B (00B)f 26.0 63.4 63.6 10.1 259 51.4
Pythia-2.8B 3ooB)t 28.0 66.0 64.7 9.0 269 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 149 27.0 54.7
Open-LLaMA-3B-v1l (1) 284 70.0 65.4 18.6 27.0 55.1
Open-LLaMA-3B-v2 amn' 28.1 69.6 66.5 17.1 26.9 55.7
Sheared-LLaMA-2.7B (so8) 28.9 73.7 68.4 16.5 26.4 56.7

> (Slightly) better than models that were “organically” trained at these

larger scales

Mengzhou Xia et al. (2023)

Approaches to Compression
> Pruning: can we reduce the number of neurons in the model?
. Basicidea: i ol

> Instead, we want some kind of structured pruning. What does this look
like?

v

Knowledge distillation

> Classic approach from Hinton et al.: train a student model to match
distribution from teacher

DistilBERT

figure credit: Tianjian Li

Pre-trained Teacher
Network

Zteacher

Input
Data

Trainable Student
Network

Knowledge

Zstudent gl
Pop— Distillation

Suppose we have a classification model with output Preacher(y | X)

Minimize KL(Pteacher | | Pstudent) to bring student dist close to teacher

Note that this is not using labels — it uses the teacher to “pseudo-label”
data, and we label an entire distribution, not just a top-one label

DistilBERT

figure credit: Tianjian Li

Pre-trained Teacher | Zteacher
Network
Input
Data
Trainable Student | 7, one Knowledge
Network S— Distillation

> Use a teacher model as a large neural network, such as BERT

> Make a small student model that is half the layers of BERT. Initialize with
every other layer from the teacher

Sanh et al. (2019)

DistilBERT

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo 68.7 44.1 68.6 76.6
BERT-base 79.5 56.3 86.7 88.6
DistilBERT 77.0 51.3 822 87.5

711 862 534 915 70.4 56.3
918 89.6 693 927 89.0 53.5
892 885 599 913 86.9 56.3

Table 2: DistilBERT yields to comparable
performance on downstream tasks. Com-
parison on downstream tasks: IMDb (test ac-
curacy) and SQuAD 1.1 (EM/F1 on dev set).
D: with a second step of distillation during
fine-tuning.

Model IMDb SQuAD

(acc.) (EM/F1)
BERT-base 93.46 81.2/88.5
DistilBERT 92.82 77.7/85.8
DistilBERT (D) - 79.1/86.9

Table 3: DistilBERT is significantly smaller
while being constantly faster. Inference
time of a full pass of GLUE task STS-B (sen-
timent analysis) on CPU with a batch size of

Model #param. Inf. time
(Millions) (seconds)
ELMo 180 895
BERT-base 110 668
DistilBERT 66 410

Sanh et al. (2019)

Other Distillation

Data Rationale
Premise: A person on a horse jumps over a broken down airplane The person could be training his horse for a
Hypothesis: A person is training his horse for a competition. competition, but it is not necessarily the case.

Question: A gentleman is carrying equipment for golf, what is he
e ; " < s carrying equip! 9 The answer must be something that is used for golf.
ikely to have’ . c N

Y > LLM » | Of the above choices, only clubs are used for golf. So

Answers: (2) club (b) assembly hall (c) meditation center (c) e oo i () i

meeting, (e) church

Luke scored 84 points after playing 2 rounds of a trivia game. If he
gained the same number of points each round. How many points
did he score per round?

Luke scored 84 points after 2 rounds. So he scored 84
points in 2 rounds. 84 / 2 = 42. The answer is (84 / 2)

flabel | Premse: A person on a horse jumps over a broken down airplane.
"

,_
1)
o
[}

neutral

club

(84/2)

f neutral
Hypothesis: A person is training his horse for a competition. >
»| Smaller Model
' Premise: A person on a horse jumps over a broken down airplane. The person could be training his horse for a
[rationale] +

Hypothesis: A person is training his horse for a competition.

competition, but it is not necessarily the case

> How to distill models for complex reasoning settings? Still an open
problem!

Cheng-Yu Hsieh et al. (2023)

Parameter-Efficient Tuning

Parameter-Efficient Tuning

> Rather than train all model parameters at once, can we get away with
just training a small number of them?

> What are the advantages of this?

> Typical advantages: lower memory, easier to serve many models for
use cases like personalization or multitasking

> Not an advantage: faster (it’s not)

BitFit
Qm,ﬂ(x) — W;n,ﬂx + b(r]n,@ hti _ att(Ql’l, I{l,Z7‘,1,£7 . Qm,l’ Km,Z7Vm,l)

Vi L N4 .
K™ (x) = W' x + b’ and then fed to an MLP with layer-norm (LN):

m,l _ m,t m.E
Vml(x) = Wix + b"” h§ = Dropout(W’, -h{ + bL) (1)

(i +x)—p .
> Tune only the bias terms of o Thiv @
the Transformer architecture, hi= GELU(Wj,-hf + b)) @)
don’t fine-tune the weights hf = Dropout(W%,, -hi + b..) @

hf +hf) —
(5 03) u+b%N2 5)

hi=giy, ©

0_
» How many parameters do you % = 8Ln: ©
think this is?

Zaken et al. (2022)

BitFit

%Param QNLI SST-2 MNLI, MNLIgy Avg.
Train size 105k 67k 393k 393k

(V) Full-FTf 100% 93,5 9.1 86.5 87.1 84.3
(V) FullFT 100% 91.7+0.1 934402 855+04 85.740.4 84.1
(V) DiffPrunef 0.5% 93.4 94.2 86.4 86.9 84.6
(V) BitFit 008% 914424 932+04 844402 84.8+0.1 84.2
(T) Full-FT} 100% 91.1 94.9 86.7 85.9 818
(T) Full-FT} 100% 93.4 94.1 86.7 86.0 81.5
(T) Adapters} 3.6% 90.7 94.0 849 85.1 81.1
(T) Diff-Prunet 0.5% 93.3 94.1 86.4 86.0 81.5
(T) BitFit 0.08% 92.0 94.2 84.5 84.8 80.9

> Degraded performance, but only train <0.1% of the parameters of

the full model!
Zaken et al. (2022)

LoRA

> Alternative: learn weight matrices as (W + BA),
where BA is a product of two low-rank matrices.

he———
A TR
> If we have a d x d matrix and we use a rank Pretrained
reduction of size r, what is the parameter Weights r
reduction from LoRA? W € R4xd

N R

) §

> Allows adding low-rank matrix on top of

existing high-rank model
Figure 1: Our reparametriza-

> Unlike some other methods, LoRA can be tion. We only train A and B.

“compiled down” into the model (just add

BA into W)
Hu et al. (2021)

LoRA
Model & Method |# Trainable
Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBpase (FT)* 125.0M| 87.6 94.8 90.2 63.6 928 919 78.7 912 864
RoBypase (BitFit)* 0.1IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2

0.3M[87.140 94.241 88.5+411 60.8+4 93.141 90240 71.5427 89.7+3 84.4
RoBpuse (AdptP)* 09M 873+ 94.7+3 8841 62.619 93.043 90.6109 759122 90.31; 85.4
ROBpase (LORA) 0.3M|87.5+3 95.1+2 89.7+7 634112 93.3+3 90.8+1 86.6+7 91.5., 87.2

ROBhase (Adpt°)*

RoBiarge (FT)* 355.0M| 902 964 90.9 68.0 947 92.2 86.6 924 88.9
RoBiarge (LORA) 0.8M[90.6-> 96215 9091, 68.2+119 94935 91.64 874125 92.6.-> 89.0

> LoRA is much better than BitFit, even better than vanilla fine-tuning
on GLUE!

Hu et al. (2021)

LLM Quantization

> A significant fraction of LLM training is just storing the weights

> Normal floating-point precision: 4 bytes per weight, gets large for
10B+ parameter models!

> How much is needed for fine-tuning?

> The Adam optimizer has to store at least 2 additional values for
each parameter (first- and second-moment estimates)

> Memory gets very large! Can we reduce this?

LLM Quantization

E t Fracti
IEEE 754 Single Precision 32-bit Float (FP32) xponen raction

 HNNRRRRRERENNNNNNENNENR 8 23
IEEE 754 Half Precision 16-bit Float (FP16)

B (11111 ; o
Google Brain Float (BF 16)

I [[[[[[] 8 7

Nvidia FP8 (E4M3)

i ‘ ;

slide credit: Tianjian Li

LLM Quantization

Original Quantized Reconstructed
32-bit float 2-bit signed int 32-bit float

-1.07|1.07| 0

Zero point Scale o | o |-107

- -1)X1.07 =
-1.07 0 |[-1.07

0 |[1.07]|1.07

> Qutlier weights can make it hard to find a good zero point/scale

slide credit: Tianjian Li

LLM Quantization

LLM Quantization

LLM] | nt8() 8-bit Vector-wise Quantization

(1) Find vector-wise constants: Cw& Cx (2) Quantize (4) Dequantize
X*(127/Cy) = X,
16 X 18

X pp— out% (C,®C,)
2 2J0] w W (127/Cy) = W, — a7 = Uty
3[o]5]2] [o]2]
1 [2fa]o] (3) Int8 Matmul
F16 F16
W XIG ‘Alm: OUtBZ

!

C

16-bit Decomposition

(1) Decompose outliers (2) FP16 Matmul

XFIG Wne= OUtns Out

W
M [2]o] ers
[] Regular values [12}s3 [3]2]
[J outliers na f1e

> Solution: combine 8-bit and 16-bit quantization, where most stuff
is 8-bit quantized Dettmers et al. (2022)

Parameters 125M 13B 2.7B 6. 7B 13B

32-bit Float 25.65 1591 1443 1330 1245
Int8 absmax 87.76 16.55 15.11 1459 19.08
Int8 zeropoint 56.66 1624 1476 1349 13.94
Int8 absmax row-wise 3093 17.08 1524 14.13 1649
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 25.72 1594 1436 1338 1347
Int8 absmax row-wise + decomposition 30.76 16.19 14.65 13.25 1246

Absmax LLM.int8() (vector-wise + decomp) 2583 1593 1444 1324 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 15.92 1443 13.24 1245

> Validation perplexity on language modeling. Prior Int8 techniques

degrade, the decomposition maintains performance
Dettmers et al. (2022)

LLM Quantization

> Interestingly, the outlier features that require 16-bit quantization
emerge at large scale

100
! ® % layers affected

% tokens affected /
80 emergence of /

outlier features

100

80

60
60

Percentage of layers or tokens affected
Percentage of layers or tokens affected

40 °
40
— o
20
20
emergence of
4 outlier features
35 30 25 20 15
0 2 4 6 . 8. . 10 12 C4 perplexity
Parameters in billions Dettmers et al (2022)

QLoRA: Memory-efficient training

Full Finetuning LoRA QLoRA

(No Adapters) Dettmers et al. (2023)

Optimizer /_\
State
(;thit) S D D @
Adapters 1 l 1 l
(16 bit) ? ? o O
=P G N e =
16-bit Transformer 16-bit Transformer 4-bit Transformer Paging Flow =
> 4-bit “normal float”, takes advantage of the fact that NN weights
typically have a zero-centered normal distribution
> Paged optimizer state to avoid memory spikes (due to training
examples with long sequence length)

Where is this going?

> Better GPU programming: as GPU performance starts to saturate, we’'ll
probably see more algorithms tailored very specifically to the
affordances of the hardware

> Small models, either distilled or trained from scratch: as LLMs gets
better, we can do with ~7B scale what used to be only doable with
ChatGPT (GPT-3.5)

> Continued focus on faster inference: faster inference can be highly
impactful across all LLM applications

Takeaways

> Decoding optimizations: speculative decoding gives a fast way to exactly
sample from a smaller model. Also techniques like Flash Attention

> Model optimizations to make models smaller: pruning, distillation

> Model compression and quantization: standard compression
techniques, but adapted to work really well for GPUs

