CS388: Natural Language Processing

Lecture 3: Multiclass Classification

Greg Durrett

"Now! ... That should clear up a few things around here!"

Administrivia

- P1 due Tuesday, January 30 (one week)
- Anisha and Greg's OHs as normal this week (see course website)

Recall: Binary Classification

Logistic regression:
$$P(y=1|x) = \frac{\exp\left(\sum_{i=1}^n w_i x_i\right)}{\left(1 + \exp\left(\sum_{i=1}^n w_i x_i\right)\right)}$$
 these sums are sparse!

Decision rule:
$$P(y=1|x) \ge 0.5 \Leftrightarrow w^{\top}x \ge 0$$

Gradient: differentiate the log likelihood: x(y - P(y = 1|x))

- This is the gradient of a single example. Can then apply stochastic gradient (or related optimization methods like Adagrad, etc.)
- ML pipeline: input -> feature representation, train model on labeled data (with stochastic gradient methods), then test on new data

This Lecture

- Evaluation in NLP (part 1)
- Multiclass fundamentals
- Feature extraction
- Multiclass logistic regression
- Start NNs (if time)

Evaluation in NLP

Evaluation in NLP

For sentiment analysis: our evaluation was accuracy

For more imbalanced classification tasks: accuracy doesn't make sense

Suppose we are classifying tokens as people's names or not:

The meeting was held between Barack Obama and Angela Merkel

The two heads of state discussed matters of the economy and the...

90+% of tokens will not be people's names depending on the text genre

Precision vs. Recall

- Precision: number of true positive predictions divided by number of positive predictions
- Recall: number of true positive predictions divided by total true positives

Predictions in blue, ground truth in gold

The meeting was held between Barack Obama and Angela Merkel

Precision = 2/3 = 0.66

Recall = 2/4 = 0.5

F1 or F-measure:

harmonic mean of these two = 0.57

Building Better Systems

System A: precision = 0.5, recall = 0.6, F1 = 0.55

System B: precision = 0.8, recall = 0.4, F1 = 0.53

Which is better?

System A: precision = 0.5, recall = 0.6, F1 = 0.55

System B: precision = 0.51, recall = 0.61, F1 = 0.56

Which is better?

Significance Tests

Paired bootstrap: Suppose you have systems A and B and test set T.
 Hypothesis: perf(A, T) > perf(B, T)

```
stat = 0
for i in 0 to K  # number of trials
   T' ~ sample from T with replacement to create test set of the same size
   if perf(A, T') < perf(B, T')  # system performance flipped on T'
      stat += 1
return pvalue = stat/K</pre>
```

► Think about the size of your test set. If 100 examples, a 1% difference is 1 example. Is that really meaningful? This can check that!

Macro F1

- Suppose you have a multiclass classification problem with 10 classes
- Which system is better?

Accuracy = 0.7, always predicts most frequent class Accuracy = 0.68, makes some correct predictions from every class

Macro-averaged F1 (Macro F1): compute F1 for each class (prec/rec of that class's labels), average these F1s

Multiclass Fundamentals

Text Classification

A Cancer Conundrum: Too Many Drug Trials, Too Few Patients

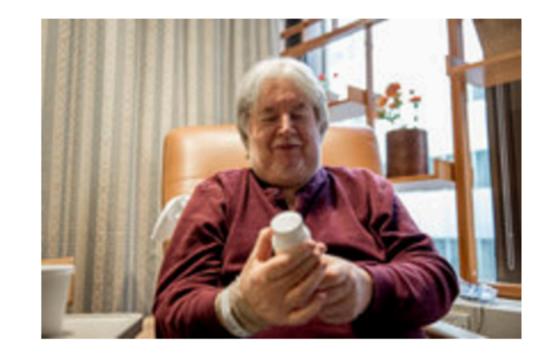
Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

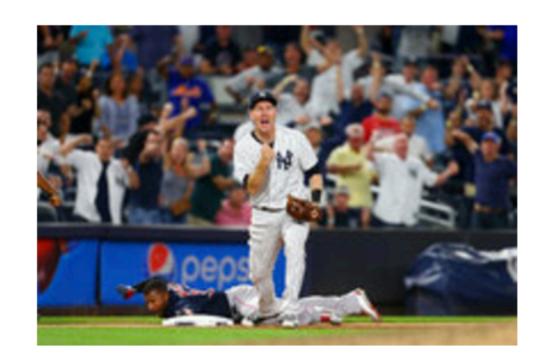
Yankees and Mets Are on Opposite Tracks This Subway Series

As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY



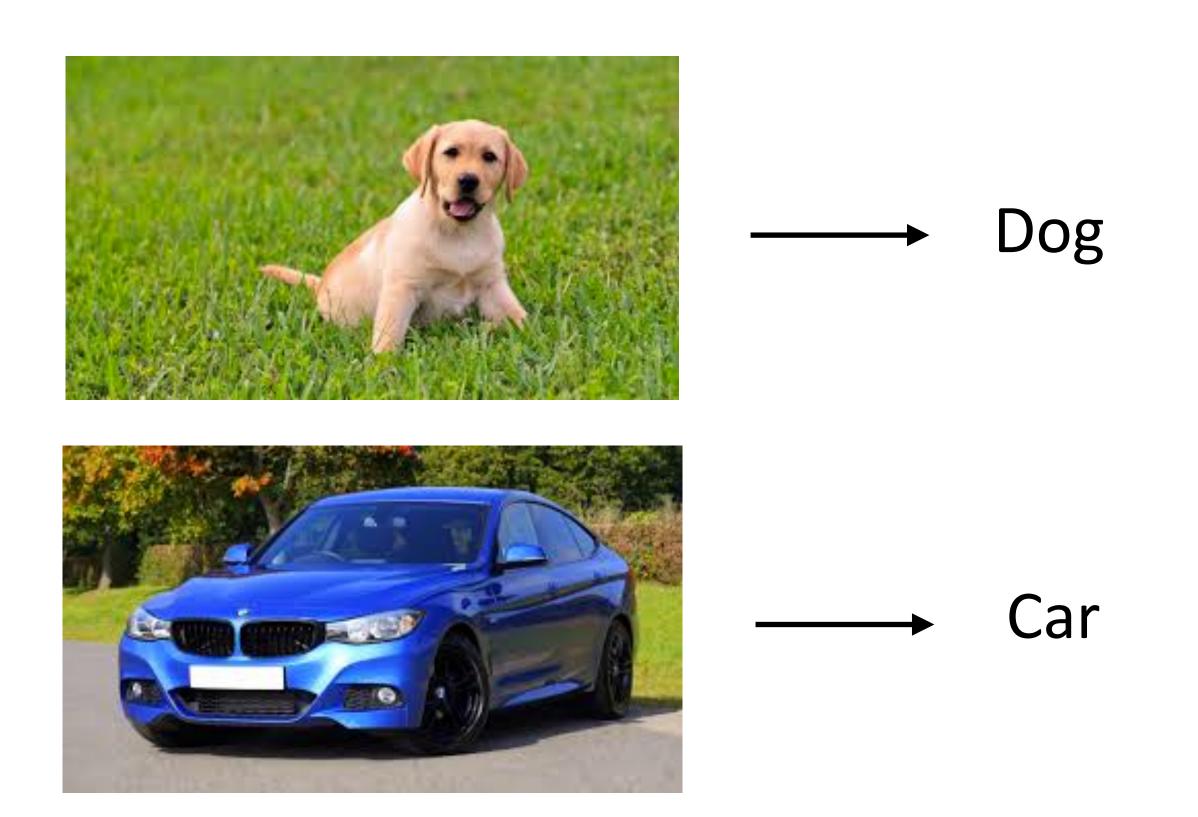
---- Health



---- Sports

~20 classes

Image Classification



Thousands of classes (ImageNet)

Entailment

Three-class task over sentence pairs

Not clear how to do this with simple bag-ofwords features

A soccer game with multiple males playing.

ENTAILS

Some men are playing a sport.

A black race car starts up in front of a crowd of people.

CONTRADICTS

A man is driving down a lonely road

A smiling costumed woman is holding an umbrella.

NEUTRAL

A happy woman in a fairy costume holds an umbrella.

Entity Linking

Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified **Armstrong** from his seven consecutive Tour de France wins from 1999–2005.

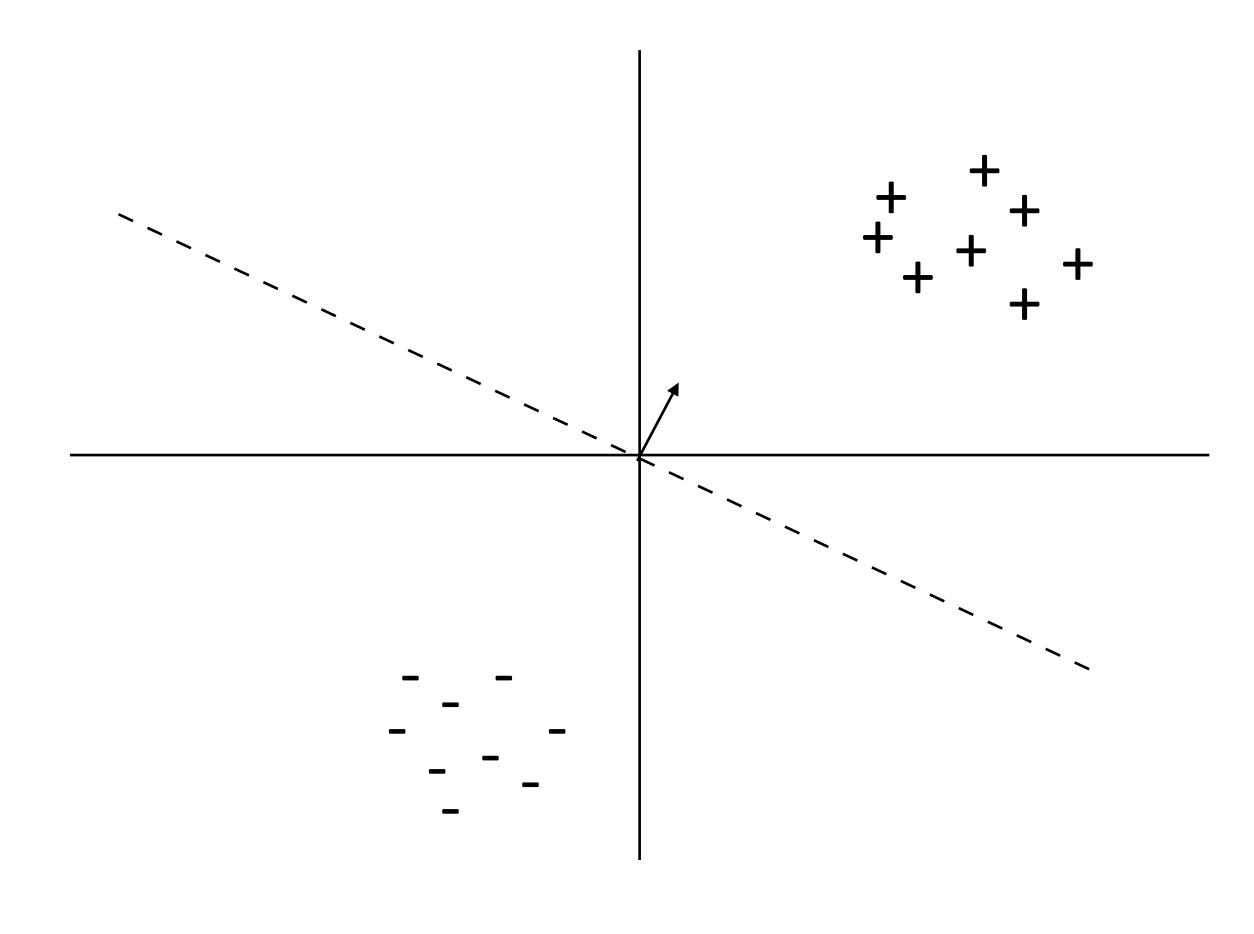
Lance Edward Armstrong is an American former professional road cyclist

Armstrong County is a county in Pennsylvania...

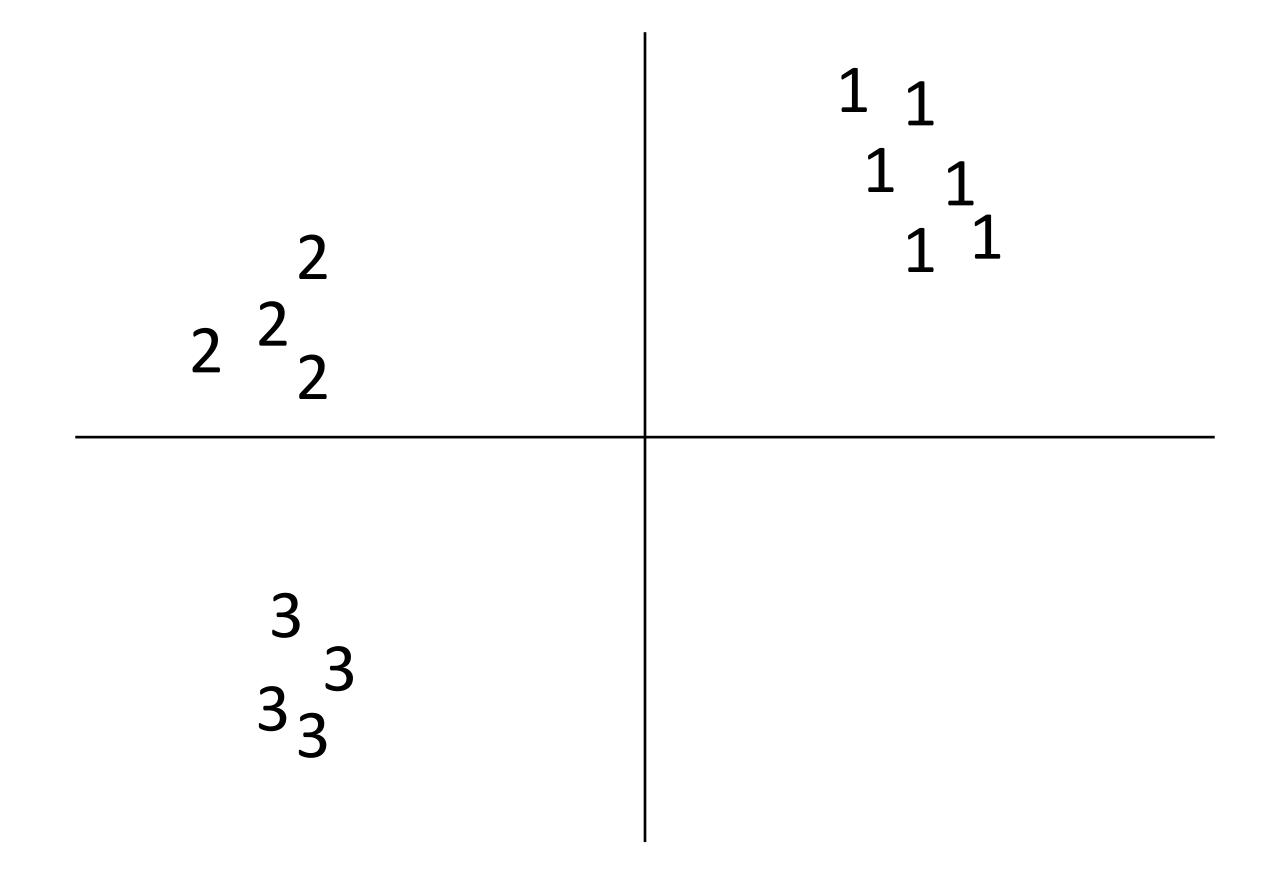
4,500,000 classes (all articles in Wikipedia)

Binary Classification

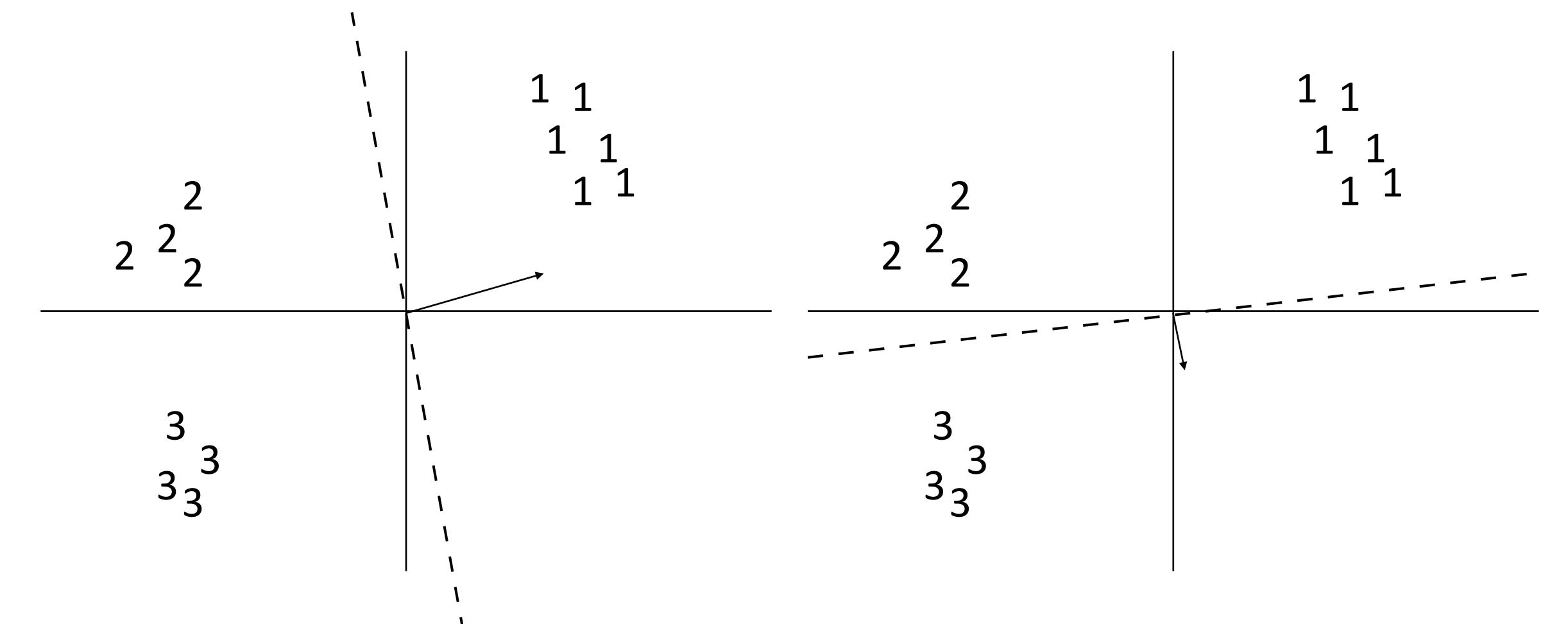
 Binary classification: one weight vector defines positive and negative classes



Can we just use binary classifiers here?



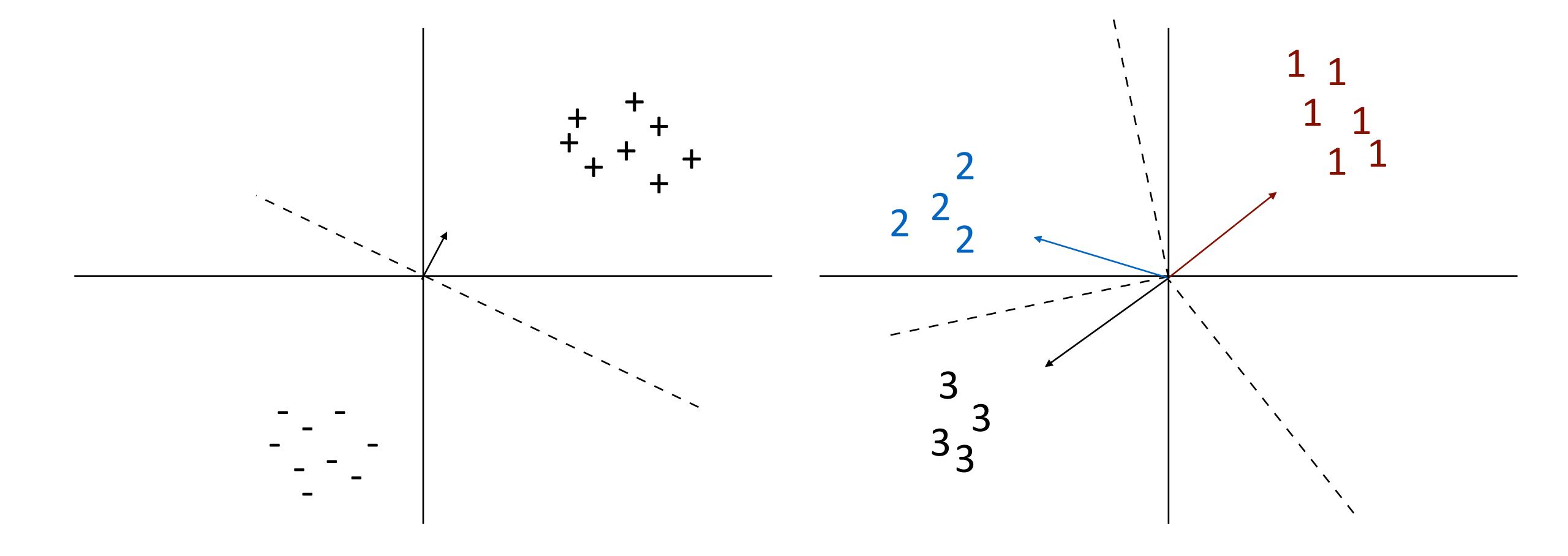
- One-vs-all: train k classifiers, one to distinguish each class from all the rest
- How do we reconcile multiple positive predictions? Highest score?



Not all classes may even be separable using this approach

 Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features)

- Binary classification: one weight vector defines both classes
- Multiclass classification: different weights and/or features per class



- Formally: instead of two labels, we have an output space ${\mathcal Y}$ containing a number of possible classes
 - Same machinery that we'll use later for exponentially large output spaces, including sequences and trees
- One weight vector per class: $\operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w}_y^{\top} \mathbf{f}(\mathbf{x})$

- Can also view it as a feature vector per class: $\operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, y)$
 - Multiple feature vectors, one weight vector

features depend on choice of label now! note: this isn't the gold label

Different Weights vs. Different Features

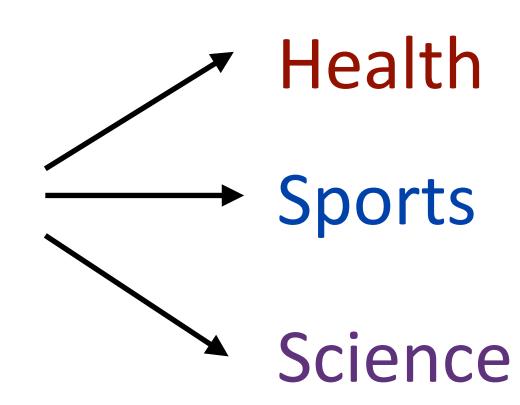
- ▶ Different weights: $\operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w}_y^\top \mathbf{f}(\mathbf{x})$
 - Generalizes to neural networks: f(x) is the first n-1 layers of the network, then you apply a final linear layer at the end
- Different features: $\operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w}^{\top} \mathbf{f}(\mathbf{x}, y)$
 - Suppose y is a structured label space (part-of-speech tags for each word in a sentence). f(x,y) extracts features over shared parts of these
- For linear multiclass classification with discrete classes, these are identical

Feature Extraction: Multiclass, Token Tagging Tasks

Multiclass Bag-of-words

- Decision rule: $\operatorname{argmax}_{y \in \mathcal{Y}} \mathbf{w}_y^{\top} \mathbf{f}(\mathbf{x})$

too many drug trials, too few patients



Feature extraction:

f(x) = I[contains drug], I[contains patients], I[contains baseball] = [1, 1, 0]

$$w_{\text{health}} = [+2.1, +2.3, -5]$$

$$w_{\text{sports}} = [-2.1, -3.8, +5.2]$$

$$w_{\text{science}} = [+1.1, -1.7, -1.3]$$

$$\mathbf{w}_y^{\top} \mathbf{f}(\mathbf{x})$$
 = Health: +4.4 Sports: -5.9 Science: -0.6

argmax

Features for Tagging Tasks

VBZ DT NNS NNthe router blocks the packets

- Part-of-speech tagging (discussed later in the semester): make a classification decision about each word. Is "blocks" a verb or a noun? (~10-40 POS tags depending on the tagset, language, etc.)
- Input: sequence of words x, output is a sequence of tags y

Simpler version: input is a sequence of words x and one index i we care about, output is the tag y for that position

 $P(y = VBZ \mid \mathbf{x} = the router blocks the packets, i = 2)$

the router [blocks] the ...

NNS

VBZ

Features for Tagging Tasks

DT NN VBZ DT NNS the router blocks the packets

Do bag-of-words features work here?

```
[contains the] [contains router] [contains is] [contains packets] ...

index 0 index 1 index 2 index 3

f(x) = \begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix}
```

- Every word in the sequence gets the same features so everything gets the same label?
- Instead we need **position-sensitive features**. Let's see how this works with *different features*

Feature Extraction

```
DT NN VBZ DT NNS

the router blocks the packets

t = 0 \quad 1 \quad 2 \quad 3 \quad 4
```

- Position-sensitive feature extractor: function from (sentence, position) =>
 sparse feature vector describing that position in the sentence
 - "Current word": what is the word at this index?
 - "Previous word": what is the word that precedes the index?

```
[currWord=router] [currWord=blocks] [prevWord = router]
```

$$f(x, i=2) = [$$
 0

- Feature vector only has 2 nonzero entries out of 10k+ possible
- ▶ All features coexist in the same space! Other feats (char level, ...) possible

Different Features for Multiclass

Classify blocks as one of 36 POS tags

- the router [blocks] the packets
- Example is a (sentence, index) pair (x,i=2): the word blocks in this sentence. Let's look at the different features view of extraction

VBZ

NNS

NN

Different features: conjoin feats with pred label:

not saying that the is tagged as VBZ! saying that the follows the VBZ word

Get features for all tags, score, take the highest scoring one — but just one weight vector!

Multiclass Logistic Regression

Multiclass Logistic Regression

$$P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top} \mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x})\right)} \begin{vmatrix} \mathbf{e} & \mathbf{f}(\mathbf{x}) \\ \mathbf{e} & \mathbf{f}(\mathbf{x}) \end{vmatrix} P_{\mathbf{w}}(y = + \mid \mathbf{x}) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}))}{1 + \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}))} \end{vmatrix}$$

sum over output space to normalize

exp/sum(exp): also called softmax

$$P_{\mathbf{w}}(y = + \mid \mathbf{x}) = \frac{\exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}))}{1 + \exp(\mathbf{w}^{\top} \mathbf{f}(\mathbf{x}))}$$

negative class implicitly has a weight vector of all zeroes

Training: maximize
$$\mathcal{L}(D) = \sum_{i=1}^{n} \log P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)})$$

(we'll minimize the negation of this objective)

$$= \sum_{i=1}^{n} \left(\mathbf{w}_{y^{(i)}}^{\top} \mathbf{f}(\mathbf{x}^{(i)}) - \log \sum_{y'} \exp(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x}^{(i)})) \right)$$

Training

- $\text{Multiclass logistic regression } P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top}\mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^{\top}\mathbf{f}(\mathbf{x})\right)}$ Log loss:

$$\mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{w}_{y^{(i)}}^{\top} \mathbf{f}(\mathbf{x}^{(i)}) + \log \sum_{y'} \exp(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x}^{(i)}))$$

$$\frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{f}(\mathbf{x}^{(i)}) + \frac{\mathbf{f}(\mathbf{x}^{(i)}) \exp(\mathbf{w}_{y^{(i)}}^{\top} \mathbf{f}(\mathbf{x}^{(i)}))}{\sum_{y'} \exp(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x}^{(i)}))}$$

$$\frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{f}(\mathbf{x}^{(i)}) + \mathbf{f}(\mathbf{x}^{(i)}) P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)})$$

Update for other classes is the same but without the first term

Training

$$\frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = -\mathbf{f}(\mathbf{x}^{(i)}) + \mathbf{f}(\mathbf{x}^{(i)}) P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)})$$

too many drug trials, too few patients

$$f(x) = [1, 1, 0]$$
 $P_w(y|x) = [0.2, 0.5, 0.3]$ (made up values)

gradient $\mathbf{w}_{Health} = -[1, 1, 0] + 0.2[1, 1, 0]$ gradient $\mathbf{w}_{Sports} = 0.5[1, 1, 0]$ gradient $\mathbf{w}_{Science} = 0.3[1, 1, 0]$ $y^* = Health$

When we make these updates: make Sports and Science look less like the example, make Health look more like it

Multiclass Logistic Regression: Summary

$$\text{Model: } P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top} \mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x})\right)}$$

- Inference: $\operatorname{argmax}_{u \in \mathcal{Y}} \mathbf{w}_u^{\top} \mathbf{f}(\mathbf{x})$ (equivalent to finding most likely y)
- Learning: gradient descent on the log loss

$$\begin{split} &\frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = \mathbf{f}(\mathbf{x}^{(i)}) (P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)}) - 1) \\ &\frac{\partial}{\partial \mathbf{w}_{\tilde{y}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = \mathbf{f}(\mathbf{x}^{(i)}) P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)}) \\ \text{"move towards } \mathbf{f}(\mathbf{x}) \text{ in proportion to how wrong you were"} \end{split}$$

Generative vs. Discriminative Models

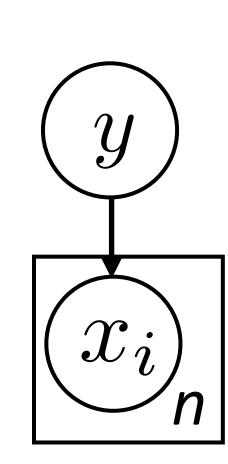
Learning in Probabilistic Models

- So far we have talked about discriminative classifiers (e.g., logistic regression which models P(y|x))
- Cannot analytically compute optimal weights for such models, need to use gradient descent
- What about generative models? Let's briefly look at a generative classifier (naive Bayes) which will introduce useful concepts about maximum likelihood estimation

Naive Bayes

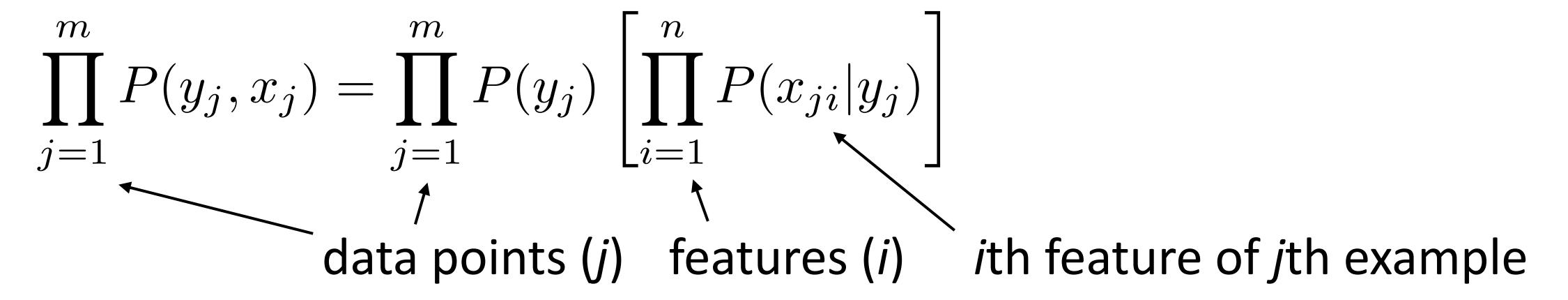
- Data point $x=(x_1,...,x_n)$, label $y\in\{0,1\}$
- Formulate a probabilistic model that places a distribution P(x,y)
- Compute P(y|x), predict $\operatorname{argmax}_y P(y|x)$ to classify

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$
 Bayes' Rule constant: irrelevant for finding the max
$$\propto P(y)P(x|y)$$
 "Naive" assumption:
$$= P(y)\prod_{i=1}^n P(x_i|y)$$



Maximum Likelihood Estimation

- ▶ Data points (x_j, y_j) provided (*j* indexes over examples)
- Find values of P(y), $P(x_i|y)$ that maximize data likelihood (generative):



Maximum Likelihood Estimation

- Imagine a coin flip which is heads with probability p
- Observe (H, H, H, T) and maximize likelihood: $\prod P(y_j) = p^3(1-p)$

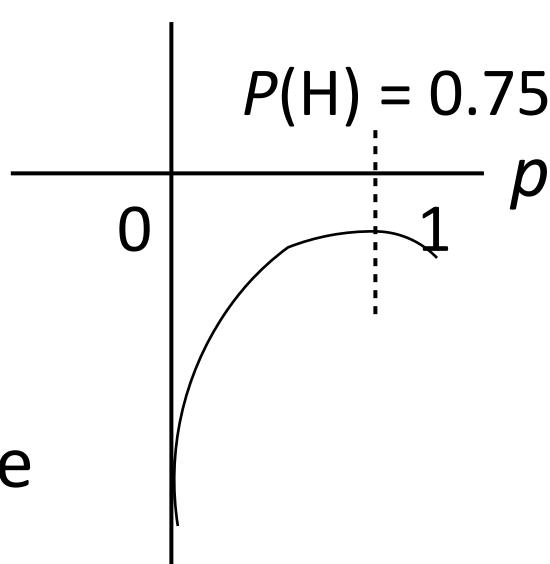
$$\prod_{j=1}^{n} P(y_j) = p^3 (1 - p)$$

Easier: maximize *log* likelihood

$$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1 - p)$$

Maximum likelihood parameters for binomial/ multinomial = read counts off of the data + normalize

log likelihood



Maximum Likelihood Estimation

- ▶ Data points (x_j, y_j) provided (i indexes over examples)
- Find values of P(y), $P(x_i|y)$ that maximize data likelihood (generative):

$$\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \left[\prod_{i=1}^{n} P(x_{ji}|y_j) \right]$$
 data points (j) features (i) ith feature of jth example

Equivalent to maximizing log of data likelihood:

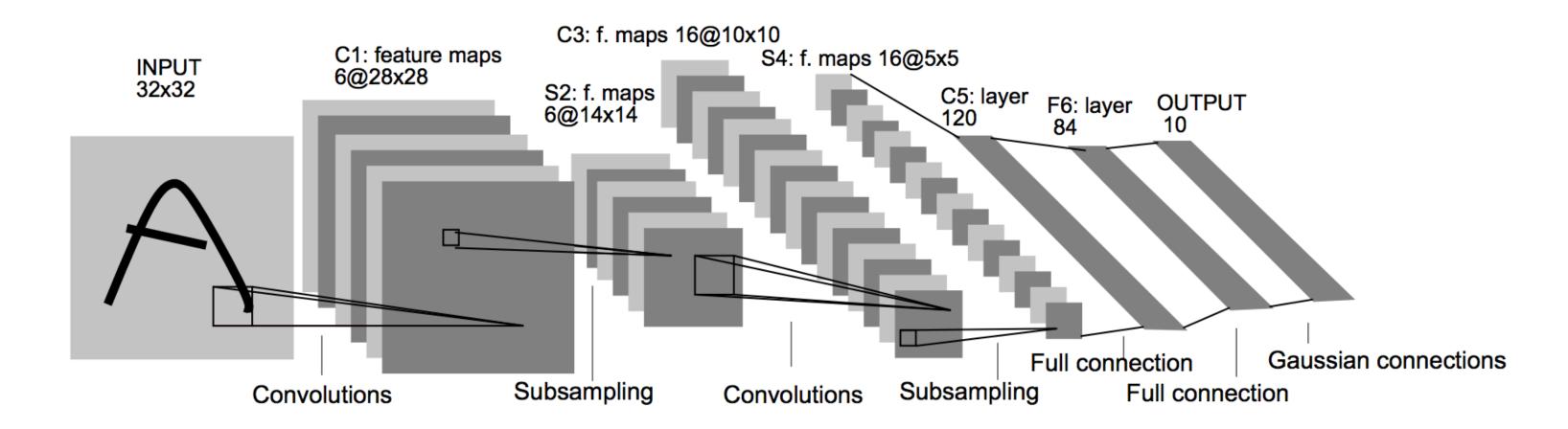
$$\sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \left[\log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji}|y_j) \right]$$

Can do this by counting and normalizing distributions!

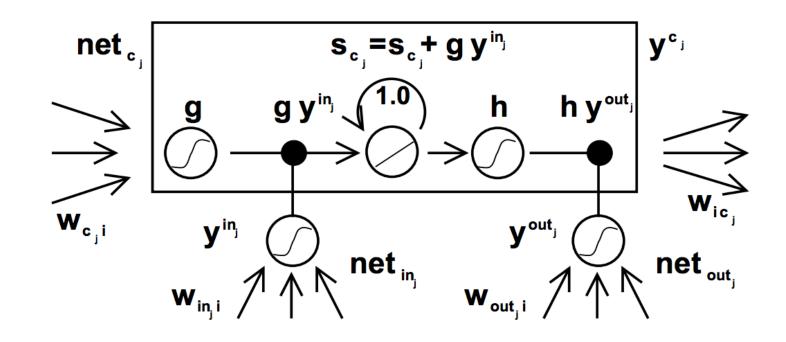
Neural Net History

History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998



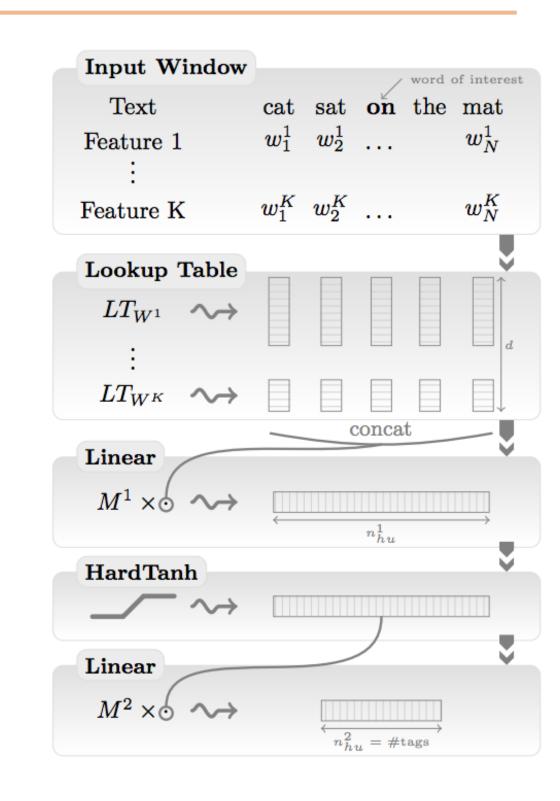
LSTMs: Hochreiter and Schmidhuber (1997)

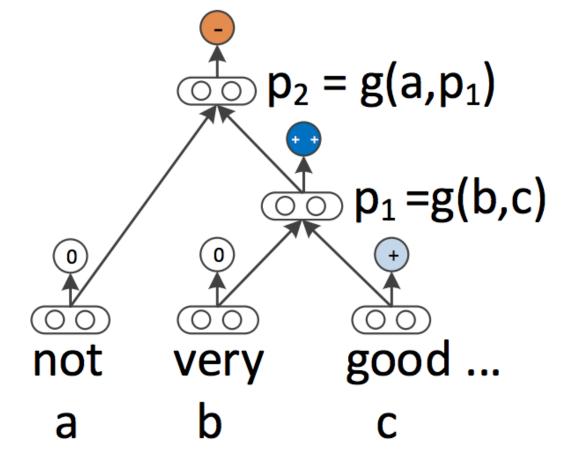


Henderson (2003): neural shift-reduce parser, not SOTA

2008-2013: A glimmer of light...

- Collobert and Weston 2011: "NLP (almost) from scratch"
 - Feedforward neural nets induce features for sequential CRFs ("neural CRF")
 - Basically tied SOTA in 2011, but with lots of computation (two weeks of training embeddings)
- Socher 2011-2014: tree-structured RNNs working okay
- Krizhevskey et al. (2012): AlexNet for vision





2014: Stuff starts working

- Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment (convnets)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs)
- Chen and Manning transition-based dependency parser (based on feedforward networks)
- What made these work? Data, optimization (initialization, adaptive optimizers), representation (good word embeddings)

Takeaways

- Two views of multiclass logistic regression:
 - Different weights: one weight vector per class, fixed features
 - Different features: single weight vector for all classes, features differ for each class (but in a systematic way)
- Gradient looks like binary logistic regression gradient: softly move gold weight vector towards the example (also move all other weight vectors away from the example)
- Next time: neural networks
 - Extension of multiclass logistic regression with a nonlinearity