CS388: Natural Language Processing
Lecture 7: Transformers

Greg Durrett

TEXAS

The University of Texas at Austin

Administrivia
> Project 2 due on Feb 13 (one week); autograder fixed

> d_internal vs. d_model: d_internal in the code is d_k in the slides

> Final project spec posted Thursday

Recap: Attention

Step 1: Compute scores for each key
keys ki
[1,0][1, 0] [0, 1][1, O]
0 0 1 0

query: g = [0, 1] (we want to find 1s)

si= kg
0 0 1 0
Step 2: softmax the scores to get probabilities a
0 0 1 0=>(1/6,1/6,1/2, 1/6) if we assume e=3
Step 3: compute output values by multiplying embs. by alpha + summing
result = sum(aiei) =1/6 [1,0] +1/6[1,0]+1/2[0,1] +1/6[1,0] =[1/2,1/2]

Recap: Self-Attention

10 01 10 0
Q= K=

. [10 8= 01 W= 010
01 01 100
10 01 100

= Q) = = =
Q=gwe)= | o, K=EW9 = |)\
01 100

Scores S=QKT Sj=gi- K

len xlen = (len x d) x (d x len)

Final step: softmax to get attentions A, then output is AE

*technically it’s A (EWV), using a values matrix V = EWV

Recap: Multi-head Self-Attention

Just duplicate the whole

Recap: Positional Encodings

Alammar, The lllustrated Transformer
. . . X Positional he movle great
computation with different - H= Encoding QEE
weightS: ATTENTION HEAD #0 ATTENTION HEAD #1 Input + + + +
Embeddi
=) g @) s
% a, y 217 B OIE
H_|> Woo I } W0 nputs @ 3] 5] 5]
EE T > Encode each sequence position as an integer, add it to the word
e embedding vector
Vo Vi
HH Wo HH Wy
: Recap: Positional Encodings

Alammar, The lllustrated Transformer
> Alternative from Vaswani et al.: sines/cosines of different frequencies
(closer words get higher dot products by default)

Words

 Embedding dir

Transformers

Architecture Dimensions
e 4 ~\ - L dmode/ N\
> Alternate multi-head self-attention with > .
Add & Norm Vectors: dimodel Add & Norm
feedforward layers that operate over each
word individually Feed > Queries/keys: dk, always smaller than dmodes dy Feed
Forward Forward
FFN(z) = max(0,zW1 + b1)W + b2 > Values: separate dimension dy,
> These feedforward layers are where most output is multiplied by W0 which Amodel
of the parameters are Add & Norm is dy X dmodes SO We can get back to oy Add & Norm
i i v => Omodel =
> Residual connections in the model: input of a Muhiead dmodel before the residual MULHASES
. . Attention) . . Attention
layer is added to its output A 7 » FFN can explode the dimension with Wi A ik 0.7
> Layer normalization: controls the scale of - |) and collapse it back with W,])
dn‘ferent‘ layers |n‘very deep networks (not FFN(z) = max(0, 2W; + b1)Wa + by Omodel
needed in the assignment) Vaswani et al. (2017)
Transformer Architecture Transformer Architecture
L dmode/
N dnda dx h dp dy (% % % %
Add & Norm 1 FLOPs/ FLOPS FLOPS FLOPS FLOPS
base [6 512 2048 8 64 64 = description update. MHA FFN attn logit
. ee
> 8
From Vaswani et al. - OPT setups
9 760M 43E+15 35% 44% 14.8% 5.8%
_
Model Neme P R T 10 1.3B 1.3E+16 32% 51% 127% 5.0%
0, 0, 0, 0,
GPT3 Small M 12 768 e o a8 N 1 2.7B 25E+16 29% 56% 11.2% 3.3%
GPT-3 Medium 350M 24 1024 16 64 ——— 12 6.7B 11E+17 24% 65% 8.1% 2.4%
GPT-3 Large 760M 24 1536 16 9 ulti-Hea
GPT3 XL 3B 5% ooas 24 108 il 13 13B 41E+17 22% 69% 6.9% 1.6%
GPT-32.7B 2.7B 32 2560 32 80 14 30B 9.0E+17 20% 74% 53% 1.0%
GPT-36.7B 6.7B 32 4096 32 128 \ f o o o o
GPT-3175B or “GPT-3” 1750B 96 12288 96 128 \ _d J 16 175B 24E+18 17% 80% 3.3% 0.3%
model

> From GPT-3; dpeqqd is OUr di

Credit: Stephen Roller on Twitter

Attention Maps

» Example visualization of heir average

attention matrix A (from

assignment)

> Each row: distribution over
what that token attends to.
E.g., the first “v” attends very
heavily to itself (bright yellow

box)

> On the HW: look to see if the

albedo

Transformers: Complete Model

Probabilities

» Original Transformer paper presents an
encoder-decoder model

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

> Right now we don’t need to think about both

of these parts — will return in the context of
N MT

Add & Norm
Feed
Forward

((Add & Norm

Multi-Head
Attention

Add & Norm
Masked
Multi-Head

Attention

> Can turn the encoder into a decoder-only
L¥ J
) model through use of a triangular causal

Positional Positional

Encoding eodng @ttention mask (only allow attention to

A >

. Tnput Output .
attentions make sense! \ﬂfljw_g| \ﬂlw previous tokens)
npu! O A .
e e o Vaswani et al. (2017)

Using Transformers

What do Transformers produce?

t t i t
[I I I[|
the movie was great

> Encoding of each word — can pass this to another layer to make a
prediction (like predicting the next word for language modeling)

> Like RNNs, Transformers can be viewed as a transformation of a
sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

> Transducer: make some prediction for each element in a sequence

DT NN VBD JJ
4 4 4 } output y = score for each tag, then softmax

I N

the movie was great
> Classifier: encode a sequence into a fixed-sized vector and classify that

predict sentiment (matmul + softmax)

average poolin
8 p’_g_< translate

paraphrase/compress
t t t t

the movie was great

Transformer Uses

predict sentiment (matmul + softmax)

average poolin
8 p’_g_< translate

paraphrase/compress
1 t i t

the movie was great

> Alternative: use a placeholder [CLS] token at the start of the sequence. Because

[CLS] attends to everything with self-attention, it can do the pooling for you!

encoding of [CLS token] — matmul + softmax — predict sentiment

: |
1 1 f i 1

[CLS] the movie was great

Transformer Uses

> Sentence pair classifier: feed in two sentences and classify something
about their relationship

Contradiction
t

[CLS] The woman is driving a car [SEP] The woman is walking .

> Why might Transformers be particularly good at sentence pair tasks
compared to something like a DAN?

Transformer Language Modeling

Transformer Language Modeling

word probs - hs
| P(w|context) = exp(w - hy)
h |:1F| > exp(w’ - hy)
| equivalent to
i i i

| saw the dog P(w|context) = softmax(Why)

» Wis a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows
are word embeddings)

Training Transformer LMs

I saw the dog running

t t t t 1 |

<s> | saw the dog

> Input is a sequence of words, output is those words shifted by one,

> Allows us to train on predictions across several timesteps simultaneously
(similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

| l — P(w | context)

, ' T — “loss = — log P(w* | context)
' 7 Il F I F I F | Total loss = sum of negative log
| | likelihoods at each position
f f f f

[I Il]! |
| saw the dog

loss_fcn = nn.NLLLoss()

loss += loss_fcn(log_probs, ex.output_tensor)
[seq len, num output classes] [seq len]

> Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num
classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

batch dim / (looked very excited to be \\

in the park and it
4 | saw the dog running\ | t ’ i ’ t , 1 ” 4 |
[! I ! I[! Il ! Il ! | i i i i f
T 1 1 1 | |
| t i t i i
[I I]! Il |
[! 1T 1T Il i I i | _<s> in the park and jJ
<> | saw the dog _/ » Multiple sequences and multiple

timesteps per sequence

A Small Problem with Transformer LMs

> This Transformer LM as we’ve described it will easily achieve perfect
accuracy. Why?

I saw the dog running

| t t t t |
i i i i

[I I I[I[|

<s> | saw the dog

> With standard self-attention: “I” attends to “saw” and the model is
“cheating”. How do we ensure that this doesn’t happen?

Attention Masking

> What do we want to prohibit?

Key words
<s> | saw the dog
<s> |
| I
Query words gaw I
the [|
dog

> We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

> nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers,
can accept an input and a mask for language modeling:

Inside the module; need to fill in size parameters

layers = nn.TransformerEncoderLayer([...])

transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[...]

Inside forward(): puts negative infinities in the red part

mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)

output = transformer_encoder(input, mask=mask)

> You cannot use these for Part 1, only for Part 2

LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length) n

— ZlogP(wal, . ,wi_l)
n

i=1
> Perplexity: exp(average negative log likelihood). Lower is better
> Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

> Avg NLL (base e) =1.242 Perplexity = 3.464 <== geometric mean of
denominators

: Preview: Pre-training and BERT

> Transformers are usually large and you don’t want to train them for each

new task
Train on language modeling... then “fine-tune” that model on your
target task with a new classification layer f .
movie was great . ot NN VED L Transformer Extensions
t t t t
the movie was great the movie was great

Scaling Laws : Transformer Runtime

7
6 2 L=(D/5.4-1013)005 | 5.6 —— L=(N/8.8-10%)-007 > Even though most Chartermey Tay et al. (2020)
3.9 percen T
48 parameters and FLOPs are AN M
[/} 5 (Dai etal, 2019) Ny(stmmlmrr]\er
2 36 . : o
S 0 in feedforward layers, Recunel Memory/ womor
4 is Downsampling S9mpressed
3 : 3.2 T f till Compressive (O]
e, ranstormers are s Transfomer/ st Transfomer
ety
3.0 H H . Clusterformer
24 limited by quadratic — fRoung | CHnTE
- 8)-0.050 y 00lingformer™: fuoyecs. 2
L= (Cmin/2.3-10%) lexity of self L R
2 27 — T . G20
io=® 107 105 1073 107! 10! 108 10° 10° 107 10° complexity ot se NN\ iy
. Low-Rank Transformer
Compute Dataset Size Parameters attention G eses) ST Trnatomer g\ Cstered Atenton
PF-days, non-embedding tokens non-embedding P Lolzv Rarlmk/ [@i - Transformet
Wang et al 20200) ernels |Transformer Fixed/Factorized/
Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset » Many ways pro posed T Random Patterns T
Random Feature Attention | Synthesizer [B
size, and amount of compute? used for training. For optimal performance all three factors must be scaled to handle this i \ sz | Sshard TSI

Linear

Sparse clam

@vetal, 202)

Switch
Transformer
[)

up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Image Transformer
e, 2010 Product Key
Axial Transformer M
ot 019

Scaling Transformer
szt o, 2021

> Transformers scale really well!

Kaplan et al. (2020)

Performers

. &5 O(L*d) o O(Lrd) 577 5 T ::\
7y /l [Y — O(Lrd) : :
: - 1 :]E : .. »» | {‘ Y/ E
: | juEn ! !
i LxL é:3L><d:%il;?<:r 83 rxL J%Lxd E
I ! - ! |
' - ST . = il
5 . - (K) |
\\\ A attention mechaniss V ,," ‘\\Q/ N Y_///,"

Figure 1: Approximation of the regular attention mechanism AV (before D ~'-renormalization) via (random)
feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

> No more len2 term, but we are fundamentally approximating the
self-attention mechanism (cannot form A and take the softmax)

Choromanski et al. (2020)

Longformer

rr‘
ni
t
W
t
i
b
b
bt
b
i
]
1
o
t
H

ET

Bkl

=

) i T
HEmE e e e
u LR
Ml el

.|

(b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

(a) Full n? attention

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

> Use several pre-specified self-attention patterns that limit the number of
operations while still allowing for attention over a reasonable set of things

> Scales to 4096-length sequences
Beltagy et al. (2021)

Time Memory
2500 15000
—#— Full self-attention
2000 =&— Longformer-loop 12500 A
=% Longformer-chunks
ﬁ 1500 4 == Longformer-cuda 10000 1
© o
< 7500 A
3 1000 =
& 5000 A
5001,
2500 A
0 4
0

5000 10000 15000 5000 10000 15000
seq len seq len

> Loop = non-vectorized version

Beltagy et al. (2021)

Time Memory
2500 7 15000
| =*— Full self-attention
2000 - / =&— Longformer-loop 12500 -
== Longformer-chunks
5 1500 4 -#— Longformer-cuda 10000 1
© om
< 75004
3 1000 =
E 5000 A
500 +
2500 A
0 4
T T T 0 T T T
5000 10000 15000 5000 10000 15000
seq len seq len

> Loop = non-vectorized version
> Note that memory of full SA blows up but runtime doesn’t. Why?
Beltagy et al. (2021)

Frontiers Vision and RL

> Will come back later in the semester when we talk about efficiency in > DALL-E 1: learns a discrete “codebook” and treats an image as a
LLMs sequence of visual tokens which can be modeled autoregressively,

then decoded back to an image

> Engineering-based approaches like Flash Attention (which supports
the “basic” Transformer) have superseded changing the Transformer > Decision Transformer: does reinforcement learning by Transformer-
model itself based modeling over a series of actions

> Transformers are now being used all over Al

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

> Transformers are going to be the foundation for the much of the rest
of this class and are a ubiquitous architecture nowadays

> Many details to get right, many ways to tweak and extend them, but
core idea is the multi-head self attention and their ability to
contextualize items in sequences

