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Administrivia
‣ Assignment 1 due in two weeks

4

‣ HPC cloud bursting now available (guide from TAs in Discord)

‣ Office hours



Recall: Multi-head Self-Attention
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Recall: Architecture

6
Figure credit:	
Stanford CS336 A1



Recall: Dimensions
‣ Main vector size dmodel

‣ Queries/keys: dk , always smaller than dmodel,	
often dmodel/h (number of heads)

‣ Values: separate dimension dv , output is 
multiplied by WO which is (dv x h) x dmodel 
so we can get back to dmodel

dmodel

hdk hdk hdv

hdv
dmodel

df

dmodel

‣ FFN can use a higher latent dimension
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dmodel

dmodel

Figure credit:	
Stanford CS336 A1



Mixture of Experts
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‣ Router scores each expert (FFNN), only the top-k scoring ones are 
used, take weighted combination of their outputs

Slide credit: Tatsu Hashimoto/CS 336

post-norm Transformer, not 
pre-norm like ours, but the 
rest of this is correct



Mixture of Experts

9 Slide credit: Tatsu Hashimoto/CS 336

‣ Variant in DeepSeek/Qwen: have 1 shared expert that’s always used



Hyperparameters: df
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‣ df = 4 dmodel is common, except on GLU variants where df = 8/3 dmodel

Slide credit: Tatsu Hashimoto/CS 336



Hyperparameters

11 Slide credit: Tatsu Hashimoto/CS 336, original figure: Kaplan et al., 2020



Hyperparameters: Heads
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‣ Ratio of num heads * head dim / model dim

Slide credit: Tatsu Hashimoto/CS 336



Hyperparameters: Layers
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‣ Ratio of dmodel and number of layers: wider or deeper?

Slide credit: Tatsu Hashimoto/CS 336



Recall: RoPE (Jianlin Su et al., 2021)
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increasing token position i (going through sentence)

d-dim 
vectors

Goal: encode positional information in each vector.

Step 1: Break into 
d/2 vectors in

For vector at 
position i:

Step 2: Rotate each one by an amount 
depending on i and the vector index
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increasing token position i (going through sentence)

index k	
(up to	
d/2)

i = 2, k = 2

d-dim 
vectors

Treat this element as a point in 2D space and 
rotate it by 

equation credit:	
Stanford CS336 A1

Recall: RoPE (Jianlin Su et al., 2021)



Recall: Where are PEs used?

16

Classical Vaswani et al. 
Transformer (2017): added to 
input

…

Modern practice: Apply RoPE to 
Qs and Ks right before self-
attention

RoPE RoPE

Q0, K0 Q1, K1



LM Evaluation

‣ Accuracy doesn’t make sense — predicting the next word is generally 
impossible so accuracy values would be very low

‣ Evaluate LMs on the likelihood of held-out data (averaged to 
normalize for length)

1

n

nX

i=1

logP (wi|w1, . . . , wi�1)

‣ Perplexity: exp(average negative log likelihood). Lower is better
‣ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
‣ Avg NLL (base e) = 1.242     Perplexity = 3.464 <== geometric mean of	
                                                                                         denominators
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Tokenizers
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Bag-of-words Features

19

this movie was great! would watch again Positive

How do classical sentiment analysis models handle this?

[contains the]   [contains a]   [contains was]  [contains movie]  [contains film]

0 0 1 1 0

position 0 position 1 position 2 position 3 position 4

‣ Very large vector space (size of vocabulary), sparse features (how many 
per example?)

…f(x) = [

…



Feature Representation

20

What are some preprocessing operations we might want to do before we 
map to words?



Feature Extraction Details
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“I thought it wasn’t that great!” critics complained.

Tokenization:

“ I thought it was n’t that great ! ” critics complained .

‣ Split out punctuation, contractions; handle hyphenated compounds

‣ Lowercasing (maybe)

‣ Filtering stopwords (maybe)

‣ Building the feature vector requires indexing the words (mapping 
them to axes). Store an invertible map from string -> index

‣ Can we use a similar process as bag-of-words to build Transformer LMs?



Tokenization for Transformers

22

Input: raw string

Output: sequence of token IDs that will be embedded through the 
embedding matrix

What are some options? Word-level? Character-level?



Word Tokenization for Transformers
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Where do we get a vocabulary from?

Will we encounter new tokens at test time that we can’t map to our vocab?

How well will this work in our Transformer?



Character (Byte) Tokenization
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Where do we get a vocabulary from?

How well will this work in our Transformer?

Will we encounter new tokens at test time that we can’t map to our vocab?



Tokenization Desiderata

25

Input: raw string

Output: sequence of token IDs that will be embedded through the 
embedding matrix

Desiderata

‣ Moderate vocabulary size: 10k ~ 500K depending on scale of LLM

‣ Ability to represent every string in the language



Vocabulary Sizes

26 Slide credit: Tatsu Hashimoto/CS 336

See GPT2 in practice: https://tiktokenizer.vercel.app/?encoder=gpt2



Byte Pair Encoding
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Bytes and Character Encodings
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bytes: Python datatype, think of it as list[byte]

Strings are mappable to/from bytes via “encoding”: UTF-8

Example: ChatGPT



UTF-8: 256 tokens

29

How does UTF-8 handle the fact that there are more than 256 tokens?

Example: ChatGPT



Tokenization Desiderata
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BPE: merge bytes into subword tokens, these become the vocabulary. 
Commonly cooccurring bytes are the first to be merged

Source: Percy Liang / CS336



BPE

31

A BPE tokenizer is defined by:

‣ A set of merges of bytes: list[tuple[bytes, bytes]]

‣ A vocabulary dict[int,bytes]

bytes: Python datatype, think of it as list[byte]

Vocab = initial characters (256 bytes) + special characters + every token 
created by a merge

BPE tokenizer is “trained” on a corpus (but not with gradient descent!)



Step 0: Chunking
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Once upon a time, there was a reliable otter named Ollie. He lived in a river with his family. 
They all loved to play and swim together.	

One day, Ollie's mom said, "Ollie, hurry and get some fish for dinner!" Ollie swam fast to 
catch fish. He saw his friend, the duck. "Hi, Ollie!" said the duck. "Hi, duck!" said Ollie. "I 
need to hurry and catch fish for my family."	

While Ollie was catching fish, he found a big shiny stone. He thought, "This is not a fish, but 
it is so pretty!" Ollie took the shiny stone home to show his family. They all looked at the 
shiny stone and smiled. The shiny stone made everyone happy, and they forgot about the 
fish for dinner.	

<|endoftext|>	

One day, a little boy named Tim went to the park. He saw a big tiger. The tiger was not 
mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun.	

Then, something unexpected happened. The tiger started to shake. Tim was scared. He did 
not know what was going on. But then, the tiger turned into a nice dog. Tim was very 
surprised.	

Tim and the dog played together now. They were very happy. The dog was easy to play 
with too. At the end of the day, Tim went home with his new friend.	

<|endoftext|>

TinyStories corpus:
Break into n chunks to 
process in parallel

Each chunk will still contain 
many of these stories, but 
<|endoftext|> should be 
stripped out — special 
characters are never 
tokenized



Step 1: Pretokenization
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We don’t produce tokens across space boundaries. “ing to” would 
never be a token. So we break things into words to start.

r"""'(?:[sdmt]|ll|ve|re)| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""

?\p{L}+ finds one or more letters with leading space, ?\p{N}+ finds 
numbers, etc.

What does this do?



Step 1: Pretokenization
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Important: preserves leading space!



Step 1: Pretokenization
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Once upon a time, there was a reliable otter named Ollie. He lived in a river with his 
family. They all loved to play and swim together.	

One day, Ollie's mom said, "Ollie, hurry and get some fish for dinner!" Ollie swam fast to 
catch fish. He saw his friend, the duck. "Hi, Ollie!" said the duck. "Hi, duck!" said Ollie. "I 
need to hurry and catch fish for my family."	

While Ollie was catching fish, he found a big shiny stone. He thought, "This is not a fish, 
but it is so pretty!" Ollie took the shiny stone home to show his family. They all looked at 
the shiny stone and smiled. The shiny stone made everyone happy, and they forgot about 
the fish for dinner.	

<|endoftext|>	

One day, a little boy named Tim went to the park. He saw a big tiger. The tiger was not 
mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun.	

Then, something unexpected happened. The tiger started to shake. Tim was scared. He 
did not know what was going on. But then, the tiger turned into a nice dog. Tim was very 
surprised.	

Tim and the dog played together now. They were very happy. The dog was easy to play 
with too. At the end of the day, Tim went home with his new friend.	

<|endoftext|>

One chunk:
Split on <|endoftext|>

Run pretokenization

Collapse into dict

{“ tiger”: 427, “ dog”: 416, …}

Why?



Step 2: Compute Merges
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Pick most frequent: “es”, “st” tied -> prefer “st” from lex ordering

Repeat until enough merges are made

Corpus:

Count dict:

Count dict (after byte-tokenizing words):

Pairwise counts:

Apply the merge, efficiently update your count dict (need to be smart!)



Step 3: Encode and Decode
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Decoding: sequence of BPE ids -> string

How should we do this?

‣ A set of merges of bytes: list[tuple[bytes, bytes]]

‣ A vocabulary dict[int,bytes]

Final tokenizer:



Step 3: Encode and Decode

38

Encoding: string -> sequence of BPE ids

How should we do this?

Do not apply the “standard” greedy heuristic of matching the longest 
token that applies! This will not return the right sequence in general.	
(This heuristic comes from WordPiece / BERT, but is not used here.)

‣ A set of merges of bytes: list[tuple[bytes, bytes]]

‣ A vocabulary dict[int,bytes]

Final tokenizer:



Tips
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Profile your code! Identify bottlenecks and fix them; think about what 
tokens / data structures / etc. need to be touched after every merge

Use multiprocessing to parallelize the initial encoding (saves ~minutes)

You’re allowed to ask LLMs for help on optimizing things…but pay 
attention to the course policies

https://stanford-cs336.github.io/spring2025-lectures/?trace=var/traces/lecture_01.json

Percy Liang shows some code here (slightly different than the project code):



Decoding
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Decoding Strategies

41

‣ LMs place a distribution P(yi |y1, …, yi-1)

‣ seq2seq models place a distribution P(yi | x, y1, …, yi-1)

‣ Generation from both models looks similar; how do we do it?

‣ Option 1: max yi P(yi |y1, …, yi-1) — take greedily best option

‣ Option 2: use beam search to find the sequence with the highest prob.

‣ Option 3: sample from the model; draw yi from that distribution

‣ When should we use these different approaches?



Decoding Strategies

42 Holtzman et al. (2019)

‣ Beam search degenerates and starts 
repeating. If you see a fragment 
repeated 2-3x, it has very high 
probability to keep repeating

‣ Story generation with GPT-2:

‣ Sampling is too noisy — 
introduces many grammatical 
errors



Degeneration

43 Holtzman et al. (2019)

P(/ | … México) and P(Universidad | … México /) — these probabilities may be 
low. But those are just 2/6 words of the repeating fragment

‣ Beam search fails because the model is 
locally normalized

P(Nacional | … Universidad) is high

P(Autónoma | … Universidad Nacional) is high

P(de |  … Universidad Nacional Autónoma) is high

P(México | Universidad Nacional Autónoma de) is high

‣Each word is likely given the previous words but the sequence is bad

‣ Let’s look at all the individual decisions 
that get made here



Drawbacks of Sampling

44 Holtzman et al. (2019)

‣ Sampling is “too random”

P(y | … they live in a remote desert uninterrupted by)

0.01    roads

0.01    towns

0.01    people

0.005  civilization

…
0.0005   town

Good options, maybe accounting for 90% of 
the total probability mass. So a 90% chance of 
getting something good

Long tail with 10% of the mass



Nucleus Sampling

45 Holtzman et al. (2019)

‣ Define a threshold p. Keep the most probable options account for p% 
of the probability mass (the nucleus), then sample among these.

‣ To implement: sort options by probability, truncate the list once the 
total exceeds p, then renormalize and sample from it

P(y | … they live in a remote desert uninterrupted by)

0.01    roads

0.01    towns

0.01    people

0.005  civilization
cut off after p% of mass

renormalize and sample



Decoding Strategies

46 Holtzman et al. (2019)

‣ LMs place a distribution P(yi |y1, …, yi-1)

‣ seq2seq models place a distribution P(yi | x, y1, …, yi-1)

‣ Option 1: max yi P(yi |y1, …, yi-1) — take greedily best option

‣ Option 2: use beam search to find the sequence with the highest prob.

‣ Option 3: sample from the model; draw yi from that distribution

‣ Option 4: nucleus sampling

‣ How to generate sequences?



Optimizers
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Optimization

48

Stochastic gradient descent

‣ Very simple to code up

‣ “First-order” technique: only relies on having gradient

Newton’s method

‣ Second-order technique

Inverse Hessian: n x n mat, expensive!
‣ Optimizes quadratic instantly

Quasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

‣ Setting step size is hard (decrease when held-out performance worsens?)

‣ Can avg gradient over a few examples and apply update once (minibatch)

w w � ↵g
<latexit sha1_base64="W4DmuSl1IwOQhWoks6fcUNj5lwk=">AAADMXiclVJLj9MwEHbCawmvLhy5WFSVWsFWSUGC4woOcOCwSHR3UdNWE9dJrXUesh2ykeW/xIV/grjsAYS48idw2tJtdxESI1n65pv5xuPxRAVnUvn+meNeuXrt+o2dm96t23fu3mvt3j+UeSkIHZKc5+I4Akk5y+hQMcXpcSEopBGnR9HJqyZ+9JEKyfLsvaoLOk4hyVjMCChLTXed150wBTUXqQaRpHBqproOWYYXLAGuPxizdKJYV2ZaT0KVF2smNt0/8NT0vP8r9o9ST+qed56IQ05jBULk1YYc7+EQeDGHNZcYr1NtJlf48dLt6jAWQHRYgFAM+GRg1hhX1jvv8a0xoWDJXPUmei8w27pN1ZZm2mr7fX9h+DIIVqCNVnYwbX0JZzkpU5opwkHKUeAXaqyb4oRT44WlpAWQE0joyMIMUirHevHjBncsM8NxLuzJFF6wmwoNqZR1GtnMpkV5MdaQf4uNShW/GGuWFaWiGVleFJccqxw364NnTFCieG0BEMFsr5jMwU5I2SXz7BCCi0++DA4H/eBpf/DuWXv/5WocO+gheoS6KEDP0T56gw7QEBHnk/PV+eZ8dz+7Z+4P9+cy1XVWmgdoy9xfvwE04w4B</latexit>
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Adam

49

Idea 1: momentum
‣ Rather than apply the gradient directly, use an exponential weighted 
moving average of the gradient



Adam

50

Idea 1: momentum
‣ Rather than apply the gradient directly, use an exponential weighted 
moving average of the gradient

Idea 2: adaptive scaling based on second moment

‣ Reduces update on features that have high variance



AdamW

51

This fix makes it “AdamW”: changes 
where weight decay is used (Adam 
does it on gradient, scaled by rt(v))

beta1: 0.9	
beta2: 0.999

Let’s look at weight decay…



Regularization in Classical ML

52

Support vector machines: classifier that maximizes the margin

Slide credit: Wikipedia

(Introduce and minimize slack and you get 
an objective which involves optimizing for 
correctness + minimizing the norm of w)



Why is low weight norm regularizing?

53

Does this hold for deep 
learning?

Often we get the orange 
line anyway due to our 
choice of optimizer (SGD 
with low learning rates, not 
trained to full convergence)

Blue: high-norm.	
Orange: low-norm (regularized)



Weight Decay

54 D’Angelo, Andriuschenko et al. (2023)

What’s going on in this plot?



Hyperparameters

55 Slide credit: Tatsu Hashimoto / CS 336

‣ Many open models do not discuss dropout and don’t use it, unclear 
if closed models do or don’t…



Learning Rate Schedule

56

Warm-up phase: starting with full learning rate can lead to “destructive” 
updates (from batch norm era, 2015 or so)

Decreasing learning rate: classical optimization theory suggests that 
learning rate should decrease, decreasing smoothly is better than stepwise

Where does cos annealing start in terms of magnitude? Where does it end?



Learning Rate Schedule
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Our complete LLM

58

Train the BPE tokenizer: chunk, pretokenize in parallel, compute merges, 
serialize tokenizer	
	
Tokenize the corpus: big file comes in, sequences of token ids come out, 
save as binary	
	
Define architecture	
	
Stream data batches using mmap, compute gradients + optimize on them	

Decode to sample tokens



Efficiency
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Resource Accounting

60

Question: How long would it take to train a 70B parameter model on 15T tokens on 
1024 H100s? where does 6 come from?

Question: What's the largest model trainable on 8 H100s with AdamW (naively)?

Answer: Around 143

Answer: 40B

what is MFU?



Resource Accounting

61

What has to be stored? (let’s brainstorm)

https://erees.dev/transformer-memory/



Resource Accounting
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What has to be stored?

https://erees.dev/transformer-memory/
What is fp32, int64, …?



Data Types

63

How much memory to store a linear layer from dmodel to 4 dmodel if dmodel is 12k?

“brain float” from Google

1e-8 is an underflow Goes down to 1e-38 but lower resolution



Data Types

64

Both E4M3 and E5M2 supported on H100

Mixed precision training gets the best of both worlds: fast without losing accuracy



Tensors

65 Slicing, transpose, etc. do not reallocate memory, but just change the view



Resource Accounting
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FLOPs: floating-point operations (measure of computation done)

‣ How expensive is adding two M x N matrices A and B?	
‣ How expensive is ATB?

FLOP/s: floating-point operations per second (also written as FLOPS), 
which is used to measure the speed of hardware.



Resource Accounting: Forward

67

Case study: linear layer. How many FLOPs for the forward pass?	

Batch = 1024	
Dim = 256	
Hidden dim size = 64

2 * 1024 * 256 * 64



Resource Accounting: Backward

68

Case study: two linear layers. How many FLOPs for forward+backward passes?	

Batch = 1024	
Dim = 256	
Hidden dim size = 64	
Output size = 64

Model: x --w1--> h1 --w2--> h2 -> loss

Compute grad for w2: 2 * 1024 * 64 * 64	
Do backward pass to w1: 2 * 1024 * 64 * 64	
Overall this is 2x as much as the forward pass

Total F+B:	
6 * data points * params



Model FLOPs Utilization (MFU)

69

Further reading:	

https://erees.dev/transformer-memory/	
https://www.adamcasson.com/posts/transformer-flops	

https://erees.dev/transformer-memory/
https://www.adamcasson.com/posts/transformer-flops


Implementing	
Transformers
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Notation
Math: we think of operations as going right to lef

PyTorch: we think of operations as going left to right

71

Wg(VX) : take X, multiply by V, apply g, multiply by W

Y = Linear(X): X is a tensor ending in the dimension din to be manipulated 
(often batch size x seq len x dimension).	
Write this in math as XVT

If X has dimension m x n, what dimension can V have?



einsum
‣ Language for tensor manipulation using labels for indices

‣ Specify indices of input tensor and which indices remain in the output. 
“Leftover” indices are summed out.

72

einsum(X, W, '... i, o i -> ... o')

einsum(X, W, ‘o i, o i ->')

einsum(X, W, ‘l i, i -> l')

einsum(X, W, ‘i, o i -> o’)

einsum(X, W, ‘i, i o -> o’)

‣ Can also use einops.rearrange to change shape, introduce new dimensions, 
etc. Try this when manipulating the heads in multi-head attention



einsum

73



Numerical Stability

Log softmax: distribute log to numerator and denominator, don’t apply 
directly

74

Compare:

[-30, -29, -29, -30] => 

[-1, 0, 0, -1] => 

Exercise: try this with different datatypes, see which ones underflow



Random seeds
Fixing random seeds 
can help debugging

75
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Next time
We’ll start understanding GPUs and acceleration a bit better

77

Flash Attention, other inference-time speedups


