Building LLM Reasoners
Lecture 2: Tokenizers,
Optimizers, Tricks

Greg Durrett

Slide credit: Tatsu Hashimoto & LLM Reasoners
Percy Liang, Stanford CS 336 L 2t NYU B

Administrative details and recap
Tokenizers

Byte Pair Encoding

Decoding

Optimizers

Efficiency

Implementing Transformers |_|_M Reasoners
— ey

Administrative details and recap

Tokenizers

Byte Pair Encoding Administrative details
Decoding and recap
Optimizers

Efficiency

Implementing Transformers

Administrivia
> Assignment 1 due in two weeks

> HPC cloud bursting now available (guide from TAs in Discord)

> Office hours

Recall: Multi-head Self-Attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting = matrices,
Input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
with weight matrices Q/K/V matrices produce the output of the layer
X Wo©
Think = VWoR QO _
lachin WoV === Ko
R v
W;0
* In all encoders other than #0, rraVWqK Q1
we don’t need embedding. B W,V H = 11‘{ T
We start directly with the output | [| Vi]

of the encoder right below this one

Output

Probabilities

| Softmax |

Linear
(Output Embedding)

[Norm

Recall: Architecture

Transformer Block

num layers
> Transformer

| Blocks

Transformer Block

— L

Token
Embedding

|

Inputs

Output tensor with shape
(batch_size, seq len, d model)

-

Add

Add

f

Position-Wise
Feed-Forward

~

s

Self-Attention
w/ RoPE

\

Causal Multi-Head

\

Norm

Input tensor with shape
(batch_size, seq len, d model)

Figure credit:
Stanford CS336 Al

Recall: Dimensions

> Main vector size dmodel o h
maqdel
. @
> Queries/keys: dk, always smaller than dmodel, .]j
often dmodei/h (number of heads)

> Values: separate dimension d,, output is
multiplied by WO which is (dvx h) x dmoder
Causal Multi-Head
so we can get back to dmode pi i

Norm]

> FFN can use a higher latent dimension

FFN(%) — SWIGLU(CE, Wl, WQ, Wg) — WQ(SILU(le) O W3$)

Figure credit:
Stanford CS336 Al

Mixture of Experts

post-norm Transformer, not

pre-norm like ours, but the Sparse Model Tokens
rest of this is correct ™ T2 T3
EEEFED EEDr_ED I]
y e - Add + Normalize \ = hoose TOp
. / < o
[Add + Normalize / - ~
. 1 | FFN 1| [FFN 2| FFN 3| |[FFN 4 FFN1| [FFN 2| [FFN 3| [FFN 4)
Sparse FFN Layer | ¢ -
.) Q.
[Add + Normalize J \ X
1 - >{ Add + Normalize }1 L
Self-Attention 1 1
T .~ Self-Attention
X R ~J \ T T
% [T EEﬂEED
“The"

>~ Router scores each expert (FFNN), only the top-k scoring ones are
used, take weighted combination of their outputs

Slide credit: Tatsu Hashimoto/CS 336

Mixture of Experts

Top-2 Routing
ED?ID E‘:%E Used in most MoEs
g ’? o 9\?‘ % %)“fg" o Switch Transformer (k=1)
| st Gshard (k=2), Grok (2), Mixtral (2),
AN Qwen (4), DBRX (4),
T J DeepSeek (7)

> Variant in DeepSeek/Qwen: have 1 shared expert that’s always used

Slide credit: Tatsu Hashimoto/CS 336

10

Hyperparameters: dg

> dff = 4 dmodel IS common, except on GLU variants where ds = 8/3 dmodel

PalLM

Mistral 7B
LLaMA-2 70B
LLaMA 70B
Qwen 14B
DeepSeek 67B
Yi 34B

T5vl.1

4
3.5
3.5
2.68
2.67
2.68
2.85
2.5

Model | dy/dmoia

Slide credit: Tatsu Hashimoto/CS 336

11

Hyperparameters

10%

—%— Nhead = 8

8% A dmodel/NMhead = 64

6% /

4%

2% /

0% | ——

Loss Increase
\

— —
Feed-Forward Ratio (d / dmodel)
50M Parameters

Slide credit: Tatsu Hashimoto/CS 336, original figure: Kaplan et al., 2020

12

Hyperparameters: Heads

> Ratio of num heads * head dim / model dim

—mm

GPT3
T5
T5vl.l
LaMDA
PaLM
LLaMA2

128
64
128
48
64

128
64

128
258
128

12288

1024 16
4096 1
8192 2
18432 1.48
8192 1

Slide credit: Tatsu Hashimoto/CS 336

13

Hyperparameters: Layers

> Ratio of dmodet and number of layers: wider or deeper?

BLOOM

T5vl.1

PaLM (540B)
GPT3/OPT/Mistral/Qwen

LLaMA / LLaMA2 /
Chinchila

T5 (11B)
GPT2

Model | dwoiet/Miayer

205
171
156
128
102

43
33

Slide credit: Tatsu Hashimoto/CS 336

14

Reca I | : ROPE (Jianlin Su et al., 2021)

wl] 0 0 0 [

increasing token position i (going through sentence)

Goal: encode positional information in each vector.

I—&—
For vector at [:] <U +D >U

position I:

Step 1: Break into Step 2: Rotate each one by an amount
d/2 vectors in [R? depending on i and the vector index

15

d-dim
vectors [:]

!

Reca I | : ROPE (Jianlin Su et al., 2021)

I

0@
0@

index k 0 .

(up to
d2) U &

] O
0 (S

i=2, k=2

increasing token position i (going through sentence)

7 equation credit:
92 k ——— S B Stanford CS336 Al

, O(k—2)/d
cos(0; 1) —sin(6; 1)

)

k
_Sin(ei,k) cos(0; k)

Treat this element as a point in 2D space and
rotate it by 6’1,1{;

16

Recall: Where are PEs used?

Positional
—ncoding

QU
INnput

INputs

Classical Vaswani et al.
Transformer (2017): added to
Input

RoPE RoPE
4 4
Qo, Ko Qi, K1

Modern practice: Apply RoPE to
Qs and Ks right before self-
attention

17

LM Evaluation

> Accuracy doesn’t make sense — predicting the next word is generally
impossible so accuracy values would be very low

> Evaluate LMs on the likelihood of held-out data (averaged to
normalize for length)

1 (4’
E ZlogP(wiWh ' . vwi—l)
1=1

> Perplexity: exp(average negative log likelihood). Lower is better
>~ Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions

~ Avg NLL (base e) =1.242 Perplexity = 3.464 <== geometric mean of
denominators

Administrative details and recap

Tokenizers

Byte Pair Encoding

Decoding Tokenizers
Optimizers

Efficiency

Implementing Transformers

18

Bag-of-words Features

this movie was great! would watch again Positive
How do classical sentiment analysis models handle this?

[contains the] [contains a] [contains was] [contains movie] [contains film] ...

fix)=1[0 0 1 1 0

> Very large vector space (size of vocabulary), sparse features (how many
per example?)

19

20

Feature Representation

What are some preprocessing operations we might want to do before we
map to words?

21

Feature Extraction Details

Tokenization:

“| thought it wasn’t that great!” critics complained.

“| thought it was n’t that great ! ” critics complained .

> Split out punctuation, contractions; handle hyphenated compounds

> Lowercasing (maybe)
> Filtering stopwords (maybe)

> Building the feature vector requires indexing the words (mapping
them to axes). Store an invertible map from string -> index

> Can we use a similar process as bag-of-words to build Transformer LMs?

22

Tokenization for Transformers

Input: raw string

Output: sequence of token IDs that will be embedded through the
embedding matrix

What are some options? Word-level? Character-level?

23

Word Tokenization for Transformers

Where do we get a vocabulary from?

Will we encounter new tokens at test time that we can’t map to our vocab?

How well will this work in our Transformer?

24

Character (Byte) Tokenization

Where do we get a vocabulary from?

Will we encounter new tokens at test time that we can’t map to our vocab?

How well will this work in our Transformer?

25

Tokenization Desiderata

Input: raw string

Output: sequence of token IDs that will be embedded through the
embedding matrix

Desiderata

> Moderate vocabulary size: 10k ~ 500K depending on scale of LLM

> Ability to represent every string in the language

26

Vocabulary Sizes

Monolingual models - 30-50k vocab

ool oot

Original 37000
transformer

GPT 40257
GPT2/3 50257
T5/T5vl.1 32128
LLaMA 32000

Multilingual / production systems 100-250k

I —

250000
PaLM 256000
GPT4 100276
Command A 255000
DeepSeek 100000
Qwen 15B 152064
Yi 64000

See GPT2 in practice: https://tiktokenizer.vercel.app/?encoder=gpt2

Slide credit: Tatsu Hashimoto/CS 336

Administrative details and recap

Tokenizers

Byte Pair Encoding

Decoding Byte Pair Encoding
Optimizers

Efficiency

Implementing Transformers

27

28

Bytes and Character Encodings

bytes: Python datatype, think of it as list[byte]

Strings are mappable to/from bytes via “encoding”: UTF-8

s = "hello world”

b = s.encode("utf-8")
print(b)
nrint(list(b))

decoded = b.decode("utf-8")
nrint(decoded)

Example: ChatGPT

UTF-8: 256 tokens

How does UTF-8 handle the fact that there are more than 256 tokens?

— H/H%n

S
b = s.encode("utf-8")
nrint(b)

s = "{R&fF"
b = s.encode("utf-8")
print(b)

Example: ChatGPT

30

Tokenization Desiderata

BPE: merge bytes into subword tokens, these become the vocabulary.
Commonly cooccurring bytes are the first to be merged

[Wikipedial

The BPE algorithm was introduced by Philip Gage in 1994 for data compression. [article]
It was adapted to NLP for neural machine translation. [Sennrich+ 2015]

(Previously, papers had been using word-based tokenization.)
BPE was then used by GPT-2. |Radford+ 2019]

Source: Percy Liang / CS336

31

BPE

bytes: Python datatype, think of it as list[byte]

A BPE tokenizer is defined by:
> A set of merges of bytes: list[tuple[bytes, bytes]]

> A vocabulary dict[int,bytes]

Vocab = initial characters (256 bytes) + special characters + every token
created by a merge

BPE tokenizer is “trained” on a corpus (but not with gradient descent!)

32

Step 0: Chunking

TinyStories corpus:

Once upon a time, there was a reliable otter named Ollie. He lived in a river with his family.
They all loved to play and swim together.

One day, Ollie's mom said, "Ollie, hurry and get some fish for dinner!" Ollie swam fast to
catch fish. He saw his friend, the duck. "Hi, Ollie!" said the duck. "Hi, duck!" said Ollie. "I

need to hurry and catch fish for my family."

While Ollie was catching fish, he found a big shiny stone. He thought, "This is not a fish, but
it is so pretty!" Ollie took the shiny stone home to show his family. They all looked at the
shiny stone and smiled. The shiny stone made everyone happy, and they forgot about the
fish for dinner.

<[endoftext[>

One day, a little boy named Tim went to the park. He saw a big tiger. The tiger was not
mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun.

Then, something unexpected happened. The tiger started to shake. Tim was scared. He did
not know what was going on. But then, the tiger turned into a nice dog. Tim was very
surprised.

Tim and the dog played together now. They were very happy. The dog was easy to play
with too. At the end of the day, Tim went home with his new friend.

<[endoftext[>

Break into n chunks to
process in parallel

Each chunk will still contain
many of these stories, but
< |endoftext|> should be
stripped out — special
characters are never
tokenized

33

Step 1: Pretokenization

We don’t produce tokens across space boundaries. “ing to” would
never be a token. So we break things into words to start.

' (2:[sdmt] |1l ve | re) | P\p{Lh| PN} | 2[M\p{LAPINH+[\s+(21\S) [\s+"""

?\p{L}+ finds one or more letters with leading space, ?\p{N}+ finds
numbers, etc.

What does this do?

34

Step 1: Pretokenization

>>> # requires regexr package

>>> 1import regex as re

>>> re.findall (PAT, "some text that i'll pre-tokenize")

['some', ' text', ' that', ' i', "'11", ' pre', '-', 'tokenize']

Important: preserves leading space!

35

Step 1: Pretokenization

One chunk:

Once upon a time, there was a reliable otter named Ollie. He lived in a river with his
family. They all loved to play and swim together.

One day, Ollie’s mom said, "Ollie, hurry and get some fish for dinner!" Ollie swam fast to
catch fish. He saw his friend, the duck. "Hi, Ollie!" said the duck. "Hi, duck!" said Ollie. "I
need to hurry and catch fish for my family."

While Ollie was catching fish, he found a big shiny stone. He thought, "This is not a fish,
but it is so pretty!" Ollie took the shiny stone home to show his family. They all looked at
the shiny stone and smiled. The shiny stone made everyone happy, and they forgot about
the fish for dinner.

<[endoftext[>

One day, a little boy named Tim went to the park. He saw a big tiger. The tiger was not
mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun.

Then, something unexpected happened. The tiger started to shake. Tim was scared. He
did not know what was going on. But then, the tiger turned into a nice dog. Tim was very
surprised.

Tim and the dog played together now. They were very happy. The dog was easy to play
with too. At the end of the day, Tim went home with his new friend.

<[endoftext[>

—— Split on <|endoftext|>

Run pretokenization

Collapse into dict

{“tiger”: 427, “dog”: 416, ...}

Why?

Step 2: Compute Merges

low low low low low
COFPUSZ lower lower widest widest widest
newest newest newest newest newest newest

Countdict: {low: 5, lower: 2, widest: 3, newest: 6}
Count dict (after byte-tokenizing words): {(1,0,w): 5 ..}

Pairwise counts:
{lo: 7, ow: 7, we: 8, er: 2, wi: 3, id: 3, de: 3, es: 9, st: 9, ne: 6, ew: 6}
Pick most frequent: “es”, “st” tied -> prefer “st” from lex ordering

Apply the merge, efficiently update your count dict (heed to be smart!)

;c Repeat until enough merges are made

37

Step 3: Encode and Decode

Final tokenizer:

>~ A set of merges of bytes: list[tuple[bytes, bytes]]
> A vocabulary dict[int,bytes]

Decoding: sequence of BPE ids -> string

How should we do this?

38

Step 3: Encode and Decode

Final tokenizer:

>~ A set of merges of bytes: list[tuple[bytes, bytes]]
> A vocabulary dict[int,bytes]

Encoding: string -> sequence of BPE ids

How should we do this?

Do not apply the “standard” greedy heuristic of matching the longest
token that applies! This will not return the right sequence in general.
(This heuristic comes from WordPiece / BERT, but is not used here.)

39

Tips

Profile your code! Identify bottlenecks and fix them; think about what
tokens / data structures / etc. need to be touched after every merge

Use multiprocessing to parallelize the initial encoding (saves “minutes)

You're allowed to ask LLMs for help on optimizing things...but pay
attention to the course policies

Percy Liang shows some code here (slightly different than the project code):
https://stanford-cs336.github.io/spring2025-lectures/?trace=var/traces/lecture 01.json

Administrative details and recap

Tokenizers

Byte Pair Encoding

becoding Decoding
Optimizers

Efficiency

Implementing Transformers

40

41

Decoding Strategies

> LMs place a distribution P(yi | vy, ..., Vi-1)
> seq2seq models place a distribution P(yi | X, y1, ..., Vi-1)

> Generation from both models looks similar; how do we do it?
> Option 1: max i P(yi |y, ..., Vi-1) — take greedily best option
> Option 2: use beam search to find the sequence with the highest prob.

> Option 3: sample from the model; draw y; from that distribution

> When should we use these different approaches?

Decoding Strategies

> Story generation with GPT-2:

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32: Pure Sampling:
"The study, published in the Proceedings of the They were cattle called Bolivian Cavalleros; they live in a
National Academy of Sciences of the United States of remote desert uninterrupted by town, and they speak huge,

America (PNAS), was conducted by researchers from the beautiful, paradisiacal Bolivian linguistic thing. They say,
Universidad Nacional Autonoma de México (UNAM) and ‘Lunch, marge.' They don't tell what the lunch is," director

the Universidad Nacional Autonoma de México Professor Chuperas Omwell told Sky News. "They've only
(UNAM/Universidad Nacional Autéonoma de been talking to scientists, like we're being interviewed by TV
México/Universidad Nacional Autonoma de reporters. We don't even stick around to be interviewed by
Meéxico/Universidad Nacional Autonoma de TV reporters. Maybe that's how they figured out that they're
Meéxico/Universidad Nacional Autonoma de ...”" cosplaying as the Bolivian Cavalleros.”

~ Beam search degenerates and starts > Sampling is too noisy —

repeating. If you see a fragment introduces many grammatical
repeated 2-3x, it has very high errors

o probability to keep repeating Holtzman et al. (2019)

Degeneration

. : : Beam Search, b=32:
Beam search fails because the model is "The study, published in the Proceedings of the

locally normalized National Academy of Sciences of the United States of

’ , D | .. America (PNAS), was conducted by researchers from the
Let’s look at all the individual decisions Universidad Nacional Autonoma de México (UNAM) and
N lnivvarcidad Nacianal AvitAnama Aa N Navico

I,] |1 \ y F - - P - ’ |
t at get | I I a d e e re - 1 N\ ‘_/‘ 1 ¥ \. b I N A AN \ - [_, _4J ! et | | s WA LN NS) - L B BALAYYFARAW _v/
f " . . .) . . { | . ! I y |
‘ i ‘\ \‘ N \ - e ‘/k 1 : a \j ——: " ,"H\ N Y F ‘ ! r'ﬁ‘\ r w "—‘\‘ Y : «’lﬁ -
\ U/ \. A AVEAVIRIA AW Bw] AW e\ @ (acCiolial MAULUIIV A UACT
" A . ' ‘ . . ! ' & . | A
/ — — — ™ " —_ e — E — — 7~ — -— 4 J \ * — — N — o~ —
IVICAICO/ UIlTIVET SIUaU \ dCliOlNdl AULOINOITIad A&
ol A ’ ' . . ! " ’] A
° ° ° ° ° — = ‘ = o - - - - \ -4 > o - -
\/ \ r ' r ! § » 4 1 2 4 1 _4 4 'Y B 2) | Y Nryrnm 2 rf Yf
I (NaCIOI lal ‘ UrllverSIdad) IS hlgh iviexX|ico/universiadad \ ACI1ONAadl AULONOITNIa ae
o000 . "
o] A p '] . . " . .
\lavicn | W verciaao \\ NCION D Ni1i1toanNnamMma A I
A ./ Y \ o 1 N A CA A ! auiVui - S ALALNTHINJITICA NANL ee e

P(Autonoma | ... Universidad Nacional) is high |
P(de | ... Universidad Nacional Autonoma) is high

P(México | Universidad Nacional Autonoma de) is high

P(/ | ... México) and P(Universidad | ... México /) — these probabilities may be
low. But those are just 2/6 words of the repeating fragment

> Each word is likely given the previous words but the sequence is bad
43 Holtzman et al. (2019)

44

Drawbacks of Sampling

: - ” Pure Sampling:
g Samphng IS “too random They were cattle called Bolivian_Cavalleros; they live in a

remote desert uninterrupted b and they speak huge,
beautiful, paradisiacal Bolivian linguistic thing. They say,
'Lunch, marge.' They don't tell what the lunch is," director
Professor Chuperas Omwell told Sky News. "They've only
been talking to scientists, like we're being interviewed by TV

P(y | ... they live in a remote desert uninterrupted by)

0.01 roads

. | 0
0.01 towns Good options, maybe accounting for 90% of

the total probability mass. So a 90% chance of
0.01 people getting something good

0.005 civilization

0.0005 town Long tail with 10% of the mass
Holtzman et al. (2019)

45

Nucleus Sampling

P(y | ... they live in a remote desert uninterrupted by)

0.01 roads

0.01 towns — renormalize and sample
0.01 people

0.005 civilization
cut off after p% of mass

> Define a threshold p. Keep the most probable options account for p%
of the probability mass (the nucleus), then sample among these.

> To implement: sort options by probability, truncate the list once the

total exceeds p, then renormalize and sample from it
Holtzman et al. (2019)

46

Decoding Strategies

> LMs place a distribution P(yi | vy, ..., Vi-1)
> seq2seq models place a distribution P(yi | X, v1, ..., Vi-1)
> How to generate sequences?

>~ Option 1: max vi P(yi |y, ..., Vi-1) — take greedily best option
> Option 2: use beam search to find the sequence with the highest prob.
- Option3:samplefromthe-model-drawyfrom-thatdistribution

> Option 4: nucleus sampling

Holtzman et al. (2019)

Administrative details and recap
Tokenizers

Byte Pair Encoding

Decoding

Optimizers

Efficiency

Implementing Transformers

Optimizers

‘es% Yiping Lu | & JRXE
@2prime_PKU

Anyone knows adam?

"dimension"?

e |. 336: "Both architectures are optimized with Adam
Who/what is "Adam"? | think this is a very serious typi
that the author should have removed from the

ISSion. _—

9:04 PM - Jul 24, 2025 - 631.4K Views

Q) 267 17 748 Q 4.8k [] 507 M

Optimization

Stochastic gradient descent W W — Qg g = 6’8 L

W

> Very simple to code up

> “First-order” technique: only relies on having gradient
>~ Can avg gradient over a few examples and apply update once (minibatch)

> Setting step size is hard (decrease when held-out performance worsens?)
—1
Newton’s method (0-)
| W < W — > L o
> Second-order technique ow

> Optimizes quadratic instantly / |
Inverse Hessian: n x n mat, expensive!

s QUasi-Newton methods: L-BFGS, etc. approximate inverse Hessian

49

Adam

ldea 1: momentum

> Rather than apply the gradient directly, use an exponential weighted
moving average of the gradient m: = Simy—1 + (1 — B1)g:

1.5

1.0

0.5

0.0

—0.5

50

Adam

ldea 1: momentum

> Rather than apply the gradient directly, use an exponential weighted
moving average of the gradient m; = Bim;—1 + (1 — B1)g:

ldea 2: adaptive scaling based on second moment

> Reduces update on features that have high variance

v < Bav + (1 — B2)g*

m
Xy \/Z—I—e

51

AdamW

init(#) (Initialize learnable parameters)
m < 0 (Initial value of the first moment vector; same shape as 60)
v < 0 (Initial value of the second moment vector; same shape as 6)
fort=1,...,7 do
Sample batch of data By
g <+ Vgl(0; B;) (Compute the gradient of the loss at the current time step)
m < Bim + (1 — B1)g (Update the first moment estimate) betal: 0.9
v 4 Bov + (1 — B2)g? (Update the second moment estimate)) beta?: 0 999

Qp ¢ Q=7 51; (Compute adjusted « for iteration t)

00— o7 (Update the parameters)
0 < 0 — a)d (Apply weight decay) < This fix makes it “AdamW”: changes
end for where weight decay is used (Adam

Let’s look at weight decay.. does it on gradient, scaled by rt(v))

52

Regularization in Classical ML

Support vector machines: classifier that maximizes the margin

L9

. 1 2
minimize — [|w|
w, b 2

subject to yi(w' x; —b)>1 Vie{l,...,n}

(Introduce and minimize slack and you get
an objective which involves optimizing for
correctness + minimizing the norm of w))

Slide credit: Wikipedia

53

Why is low weight norm regularizing?

BI ue: high-n()rm . Degree-4 polynomial: high-norm overfit vs low-norm regularized

Orange: low-norm (regularized) el 4 1t o o) — Eypically higher o

deg-4 fit (ridge, A=10.0) — lower norm
2 -

Often we get the orange

line anyway due to our i //\
choice of optimizer (SGD \

. . ° \
with low learning rates, not \/
trained to full convergence) -

Does this hold for deep

Iea rning? —2I.O —1I.5 —1I.0 —(I).5 0.0 015 1i0 1i5 2i0

54

Weight Decay

0.35 - Train w WD

What'’s going on in this plot? ~ 2 Tain wio WD

Test w WD
0.30 — Test w/o WD

0.10-

0.05-

/
0.00- F-—48—--8---—0k—0

10k 50k 250k 1Im 5m
Dataset Size

Figure 1: Test error vs. dataset
size¢ on CIFAR-10-5m for a
fixed number of training iteration.

D’Angelo, Andriuschenko et al. (2023)

55

Hyperparameters

> Many open models do not discuss dropout and don’t use it, unclear

if closed models do or don’t...

Original transformer
GPT2

15

GPT3

T5vl.1

PaLM

OPT

LLaMA

Qwen 14B

0.1

0.1

0.1

0.1

0

0

0.1

0

0.1

0

0.1

0

0.1

0
(variable)
0.1

0.1

0.1

Slide credit: Tatsu Hashimoto / CS 336

56

Learning Rate Schedule

Warm-up phase: starting with full learning rate can lead to “destructive”
updates (from batch norm era, 2015 or so)

Decreasing learning rate: classical optimization theory suggests that
learning rate should decrease, decreasing smoothly is better than stepwise

(Warm-up) If t < T, then a; = Tiamax.

(Cosine annealing) If T, <t <T,, then a; = amin + % (1 1 COS (Téc_—T%Uw w)) (e — Cmin)

(Post-annealing) If ¢t > T, then a; = amin.

Where does cos annealing start in terms of magnitude? Where does it end?

57

1.0 -

0.8 -

0.6 -

alpha t

0.2 -

0.0 -

Learning Rate Schedule

Warm-up + Cosine Annealing Schedule

0.4 -

20

40

60

80

100

58

Our complete LLM

Train the BPE tokenizer: chunk, pretokenize in parallel, compute merges,
serialize tokenizer

Tokenize the corpus: big file comes in, sequences of token ids come out,
save as binary

Define architecture

Stream data batches using mmap, compute gradients + optimize on them

Decode to sample tokens

Administrative details and recap
Tokenizers

Byte Pair Encoding

Decoding Efficiency
Optimizers

Efficiency

Implementing Transformers Slide credits for this section:

Percy Liang / CS 336

59

Resource Accounting

Question: How long would it take to train a 70B parameter model on 15T tokens on

1024 H100s? where does 6 come from?
total_flops = 6 * 70e€ [Se!
h100_flop_per_sec = 19

mfu = (
flops_per_day = hl1l00_flop_per_sec * mfu * 102

days = total_flops / flops_per_day
' ?
Answer: Around 143 what is MFU:

Question: What's the largest model trainable on 8 H100s with AdamW (naively)?
h100_bytes = 80e€
bytes_per_parameter = 4 + 4 + (4 + 4)

num_parameters = (h100_bytes * 8) / bytes_per_parameter

print (num_parameters)

0 Answer: 40B

61

Resource Accounting

What has to be stored? (let’s brainstorm)

https://erees.dev/transformer-memory/

62

Resource Accounting

What has to be stored?

At the start of the forward pass:

» FP32 copies of the weights of your model, M,ode1 = 4Nparam + 4/NVpur (fp32 implies 4 bytes
per element)

» FP32 copies of optimizer states, 2 for adam, M ptimizer = 8/Vparam

e Copies of your data and targets, assuming int64 inputs (as in nanoGPT),
M gata = 2 X Bsz X T' X 8 (int64 implies 8 bytes per element)

After the backwards pass (and possibly persisting):

o FP32 copies of the gradients size, Mgradients = 4/Vparam

What is fp32, int64, ...?
https://erees.dev/transformer-memory/

63

Data lypes

IEEE 754 single-precision 32-bit float

sigln exponent (8 bit) fraction (23 bit)
I —

c o1 1 1 1 1 0 O O 1 O O O O O O O O GO O O O OO GO O O O O o o o

31 30 23 22 0

“brain float” from Google

IEEE half-precision 16-bit float

| . | | bfloat16
S|g|n | exponent (5 bit) o fraction (10 bit) | Sigln exponent (8 bit) fraction (7 bit)
o o0 1 1 O O 0 1 0o o 0O 0 0o o o o O 0 1 1 1 1 1 O O O 1 o O o o o
15 14 10 9 0 15 14 7 6 0
1e-8 is an underflow Goes down to 1e-38 but lower resolution

How much memory to store a linear layer from dmodel t0 4 dmodel if dmodel is 12k?

Data lypes

https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/examples/fp8_primer.html

sign exponent mantissa

FPl6f0o|o0o|1|12|o0o|1|1|0|0|1|0|21|0|0]|1]|1] =0395264

BFI6 | 0 | 0 | 1 1 1,110 1|1 (00|10]| 1| 0 =0.394531

FPBEAM3| O | O | 1 | O 1 1|0 |1 =0.40625

FPBESM2| O | O | 1 1,011 0 =0.375

Both E4AM3 and E5M?2 supported on H100

Mixed precision training gets the best of both worlds: fast without losing accuracy

64

Tensors

strides[1]
—ee
a two-dimensional tensor 0 1 2 3
strides[O] 4 5 6 7
8 9 10 11
2 13 14 15

strides|1] Underlying storage
#

0 1 2 3 4 S) 6 7 8 9 10 " 12 13 14 15

strides|O]

Slicing, transpose, etc. do not reallocate memory, but just change the view

66

Resource Accounting

FLOPs: floating-point operations (measure of computation done)

> How expensive is adding two M x N matrices A and B?
> How expensive is ATB?

FLOP/s: floating-point operations per second (also written as FLOPS),
which is used to measure the speed of hardware.

A100 has a peak performance of 312 teraFLOP/s |[spec]
assert al@@_flop_per_sec == 312el?2

H100 has a peak performance of 1979 teraFLOP/s with sparsity, 50% without [spec]
assert hle0_flop_per_sec == 197/9el12 / 2

67

Resource Accounting: Forwarad

Case study: linear layer. How many FLOPs for the forward pass?

Batch = 1024
Dim = 256
Hidden dim size = 64

2 *1024 * 256 * 64

68

Resource Accounting: Backward

Case study: two linear layers. How many FLOPs for forward+backward passes?

Batch = 1024

Dim = 256

Hidden dim size = 64
Output size = 64

Model: x --w1--> hl --w2--> h2 -> |loss

Compute grad for w2: 2 * 1024 * 64 * 64 Total F+B-
Do backward passtowl:2 * 1024 * 64 * 64

6 * data points * params
Overall this is 2x as much as the forward pass

69

Model FLOPs Utilization (MFU)

Further reading:

https:
https:

erees.dev/transformer-memor
www.adamcasson.com/posts/transformer-flops

https://erees.dev/transformer-memory/
https://www.adamcasson.com/posts/transformer-flops

Administrative details and recap

Tokenizers

Byte Pair Encoding Implementing
Decoding Transformers
Optimizers

Efficiency

Implementing Transformers

70

/1

Notation

Math: we think of operations as going right to left

Wg(VX) : take X, multiply by V, apply g, multiply by W

If X has dimension m x n, what dimension can V have?

PyTorch: we think of operations as going left to right

Y = Linear(X): X is a tensor ending in the dimension di, to be manipulated
(often batch size x seq len x dimension).
Write this in math as XVT

eljnsum

> Language for tensor manipulation using labels for indices

> Specify indices of input tensor and which indices remain in the output.
“Leftover” indices are summed out.

‘ ®

etnhsum(X, W, ‘1, o1 -> 0’)

‘ ®

etnsum(X, W, ‘1, 1 o -> 0’)

ethsum(X, W, ‘1 1, 1 -> 1")

W
W
etnsum(X, W, ‘o1, o1 ->")
W
W, '"... 1, 01 ->...0")

erthsum(X,

> Can also use einops.rearrange to change shape, introduce new dimensions,
,, etc. Try this when manipulating the heads in multi-head attention

eljnsum

How do you keep track of tensor dimensions?

Old way:
X = torch.ones(2, 2, 1, 3) # batch seq heads hidden @inspect x

New (jaxtyping) way:
x: Float[torch.Tensor, "batch seq heads hidden"] = torch.ones(2, 2, 1, 3) # @inspect x

Note: this Is just documentation (no enforcement).

/4

Numerical Stability

Log softmax: distribute log to numerator and denominator, don’t apply
directly

Compare:

-30, -29, -29, -30] =>

[-1) O/ OI -1] =>

Exercise: try this with different datatypes, see which ones underflow

/5

Fixing random seeds
can help debugging

Random seeds

Torch
seed = 0

torch.manual seed(seed)

NumPy
import numpy as np

np.random.seed(seed)

Python
import random

random. seed(seed)

Administrative details and recap
Tokenizers

Byte Pair Encoding

Decoding

Optimizers

Efficiency

Implementing Transformers

76

77

Next time

We’ll start understanding GPUs and acceleration a bit better

Flash Attention, other inference-time speedups

